
COMP 790: OS Implementation

Virtual File System

Don Porter

1

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

2

Today’s Lecture

COMP 790: OS Implementation

History
• Early OSes provided a single file system
– In general, system was pretty tailored to target hardware

• In the early 80s, people became interested in
supporting more than one file system type on a
single system
– Any guesses why?
– Networked file systems – sharing parts of a file system

transparently across a network of workstations

COMP 790: OS Implementation

Modern VFS
• Dozens of supported file systems
– Allows experimentation with new features and designs

transparent to applications
– Interoperability with removable media and other OSes

• Independent layer from backing storage
– Pseudo FSes used for configuration (/proc, /devtmps…)

only backed by kernel data structures

• And, of course, networked file system support

COMP 790: OS Implementation

More detailed diagram

VFS

ext4

Page Cache

Block Device

IO Scheduler

Driver

Disk

Kernel

User

btrfs fat32 nfs

Network

COMP 790: OS Implementation

User’s perspective
• Single programming interface
– (POSIX file system calls – open, read, write, etc.)

• Single file system tree
– A remote file system with home directories can be

transparently mounted at /home

• Alternative: Custom library for each file system
– Much more trouble for the programmer

COMP 790: OS Implementation

What the VFS does
• The VFS is a substantial piece of code, not just an API

wrapper
• Caches file system metadata (e.g., file names,

attributes)
– Coordinates data caching with the page cache

• Enforces a common access control model
• Implements complex, common routines, such as

path lookup, file opening, and file handle
management

COMP 790: OS Implementation

FS Developer’s Perspective
• FS developer responsible for implementing a set of

standard objects/functions, which are called by the
VFS
– Primarily populating in-memory objects from stable

storage, and writing them back

• Can use block device interfaces to schedule disk I/O
– And page cache functions
– And some VFS helpers

• Analogous to implementing Java abstract classes

COMP 790: OS Implementation

High-level FS dev. tasks
• Translate between volatile VFS objects and backing

storage (whether device, remote system, or
other/none)
– Potentially includes requesting I/O

• Read and write file pages

COMP 790: OS Implementation

Opportunities
• VFS doesn’t prescribe all aspects of FS design
– More of a lowest common denominator

• Opportunities: (to name a few)
– More optimal media usage/scheduling
– Varying on-disk consistency guarantees
– Features (e.g., encryption, virus scanning, snapshotting)

COMP 790: OS Implementation

Core VFS abstractions
• super block – FS-global data
– Early/many file systems put this as first block of partition

• inode (index node) – metadata for one file
• dentry (directory entry) – file name to inode

mapping
• file – a file handle – refers to a dentry and a cursor in

the file (offset)

COMP 790: OS Implementation

Super blocks
• SB + inodes are extended by FS developer
• Stores all FS-global data
– Opaque pointer (s_fs_info) for fs-specific data

• Includes many hooks for tasks such as creating or
destroying inodes

• Dirty flag for when it needs to be synced with disk
• Kernel keeps a circular list of all of these

COMP 790: OS Implementation

Inode
• The second object extended by the FS
– Huge – more fields than we can talk about

• Tracks:
– File attributes: permissions, size, modification time, etc.
– File contents:

• Address space for contents cached in memory
• Low-level file system stores block locations on disk

– Flags, including dirty inode and dirty data

COMP 790: OS Implementation

Inode history
• Name goes back to file systems that stored file

metadata at fixed intervals on the disk
– If you knew the file’s index number, you could find its

metadata on disk

• Hence, the name ‘index node’
• Original VFS design called them ‘vnode’ for virtual

node (perhaps more appropriately)
• Linux uses the name inode

COMP 790: OS Implementation

Embedded inodes
• Many file systems embed the VFS inode in a larger,

FS-specific inode, e.g.,:
struct donfs_inode {

int ondisk_blocks[];
/* other stuff*/
struct inode vfs_inode;

}
• Why? Finding the low-level data associated with an

inode just requires simple (compiler-generated) math

COMP 790: OS Implementation

Linking
• An inode uniquely identifies a file for its lifespan
– Does not change when renamed

• Model: Inode tracks “links” or references on disk
– Created by file names in a directory that point to the inode
– Ex: renaming the file temporarily increases link count and

then lowers it again

• When link count is zero, inode (and contents) deleted
– There is no ‘delete’ system call, only ‘unlink’

COMP 790: OS Implementation

Linking, cont.
• “Hard” link (link system call/ln utility): creates a second

name for the same file; modifications to either name
changes contents.
– This is not a copy

• Open files create an in-memory reference to a file
– If an open file is unlinked, the directory entry is deleted

immediately, but the inode and data are retained until all in-
memory references are deleted

• Common trick for temporary files:
– create (1 link)
– open (1 link, 1 ref)
– unlink (0 link)
– File gets cleaned up when program dies

• (kernel removes last reference on exit)

COMP 790: OS Implementation

Inode ‘stats’
• The ‘stat’ word encodes both permissions and type
• High bits encode the type: regular file, directory,

pipe, char device, socket, block device, etc.
– Unix: Everything’s a file! VFS involved even with sockets!

• Lower bits encode permissions:
– 3 bits for each of User, Group, Other + 3 special bits
– Bits: 2 = read, 1 = write, 0 = execute
– Ex: 750 – User RWX, Group RX, Other nothing

COMP 790: OS Implementation

Special bits
• For directories, ‘Execute’ means search
– X-only permissions means I can find readable

subdirectories or files, but can’t enumerate the contents
– Useful for sharing files in your home directory, without

sharing your home directory contents
• Lots of information in meta-data!

• Setuid bit
– Mostly relevant for executables: Allows anyone who runs

this program to execute with owner’s uid
– Crude form of permission delegation

COMP 790: OS Implementation

More special bits
• Group inheritance bit
– In general, when I create a file, it is owned by my default

group
– If I create in a ‘g+s’ directory, the directory group owns the

file
– Useful for things like shared git repositories

• Sticky bit
– Restricts deletion of files

COMP 790: OS Implementation

File objects
• Represent an open file; point to a dentry and cursor
– Each process has a table of pointers to them
– The int fd returned by open is an offset into this table

• These are VFS-only abstractions; the FS doesn’t need
to track which process has a reference to a file

• Files have a reference count. Why?
– Fork also copies the file handles
– If your child reads from the handle, it advances your

(shared) cursor

COMP 790: OS Implementation

File handle games
• dup, dup2 – Copy a file handle
– Just creates 2 table entries for same file struct, increments

the reference count

• seek – adjust the cursor position
– Obviously a throw-back to when files were on tapes

• fcntl – Like ioctl (misc operations), but for files
• CLOSE_ON_EXEC – a bit that prevents file inheritance

if a new binary is exec’ed (set by open or fcntl)

COMP 790: OS Implementation

Dentries
• These store:
– A file name
– A pointer to an inode
– A parent pointer (null for root of file system)

• Ex: /home/porter/vfs.pptx would have 4 dentries:
– /, home, porter, & vfs.pptx
– Parent pointer distinguishes /home/porter from

/tmp/porter

• These are also VFS-only abstractions
– Although inode hooks on directories can populate them

COMP 790: OS Implementation

Why dentries?
• A simple directory model might just treat it as a file

listing <name, inode> tuples
• Why not just use the page cache for this?
– FS directory tree traversal very common; optimize with

special data structures

• The dentry cache is a complex data structure we will
discuss in much more detail later

COMP 790: OS Implementation

Summary of abstractions
• Super blocks – FS- global data
• Inodes – stores a given file
• File (handle) – Essentially a <dentry, offset> tuple
• Dentry – Essentially a <name, parent dentry, inode>

tuple

COMP 790: OS Implementation

More on the user’s perspective
• Let’s wrap today by discussing some common FS

system calls in more detail
• Let’s play it as a trivia game
– What call would you use to…

COMP 790: OS Implementation

Create a file?
• creat
• More commonly, open with the O_CREAT flag
– Avoid race conditions between creation and open

• What does O_EXCL do?
– Fails if the file already exists

COMP 790: OS Implementation

Create a directory?
• mkdir
• But I thought everything in Unix was a file!?!
– This means that sometimes you can read/write an existing

handle, even if you don’t know what is behind it.
– Even this doesn’t work for directories

COMP 790: OS Implementation

Remove a directory
• rmdir

COMP 790: OS Implementation

Remove a file
• unlink

COMP 790: OS Implementation

Read a file?
• read()
• How do you change cursor position?
– lseek (or pread)

COMP 790: OS Implementation

Read a directory?
• readdir or getdents

COMP 790: OS Implementation

Shorten a file
• truncate/ftruncate
• Can also be used to create a file full of zeros of

abritrary length
– Often blocks on disk are demand-allocated

(laziness rules!)

COMP 790: OS Implementation

What is a symbolic link?
• A special file type that stores the name of another

file
• How different from a hard link?
– Doesn’t raise the link count of the file
– Can be “broken,” or point to a missing file

• How created?
– symlink system call or ‘ln –s’ command

COMP 790: OS Implementation

Let’s step it up a bit

COMP 790: OS Implementation

How does an editor save a file?
• Hint: we don’t want the program to crash with a half-

written file
• Create a backup (using open)
• Write the full backup (using read old/ write new)
• Close both
• Do a rename(old, new) to atomically replace

COMP 790: OS Implementation

How does ‘ls’ work?
• dh = open(dir)
• for each file (while readdir(dh))
– Print file name

• close(dh)

COMP 790: OS Implementation

What about that cool colored text?
• dh = open(dir)
• for each file (while readdir(dh))
– stat(file, &stat_buf)
– if (stat & execute bit) color == green
– else if …
– Print file name
– Reset color

• close(dh)

COMP 790: OS Implementation

Summary
• Today’s goal: VFS overview from many perspectives
– User (application programmer)
– FS implementer

• Used many page cache and disk I/O tools we’ve seen

• Key VFS objects
• Important to be able to pick POSIX fs system calls

from a line up
– Homework: think about pseudocode from any simple

command-line file system utilities you type this weekend

