
COMP 790: OS Implementation

VFS, Continued

Don Porter

1



COMP 790: OS Implementation

Logical Diagram

Memory 
Management

CPU
Scheduler

User

Kernel

Hardware

Binary 
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory 
Allocators Threads

2

Today’s Lecture



COMP 790: OS Implementation

Previous lectures
• Basic VFS abstractions
– Including data structures
– And programming model (file system)
– And APIs

• Some system call examples
• Walk through some system calls
• Plus synchronization issues



COMP 790: OS Implementation

Today’s goal: Synthesis
• Walk through two system calls in some detail
– Open and read

• Too much code to cover all FS system calls



COMP 790: OS Implementation

Quick review: dentry
• What purpose does a dentry serve?
– Essentially maps a path name to an inode
– More in 2 slides on how to find a dentry

• Dentries are cached in memory
– Only “recently” accessed parts of a directory are in 

memory; others may need to be read from disk
– Dentries can be freed to reclaim memory (like pages)



COMP 790: OS Implementation

Dentry caching
• 3 Cases for a dentry:
– In memory (exists)
– Not in memory (doesn’t exist)
– Not in memory (on disk/evicted for space or never used)

• How to distinguish last 2 cases?
– Case 2 can generate a lot of needless disk traffic
– “Negative dentry” – Dentry with a NULL inode pointer



COMP 790: OS Implementation

Dentry tracking
• Dentries are stored in four data structures:
– A hash table (for quick lookup)
– A LRU list (for freeing cache space wisely)
– A child list of subdirectories (mainly for freeing)
– An alias list (to do reverse mapping of inode -> dentries)

• Recall that many directories can map one inode



COMP 790: OS Implementation

Open summary
• Key kernel tasks:
– Map a human-readable path name to an inode
– Check access permissions, from / to the file
– Possibly create or truncate the file (O_CREAT, O_TRUNC)
– Create a file descriptor 



COMP 790: OS Implementation

Open arguments
• int open(const char *path, int flags, int mode);

• Path: file name
• Flags: many (see manual page), include read/write 

perms
• Mode: If a file is created, what permissions should it 

have? (e.g., 0755)
• Return value: File handle index (>= 0 on success) 
– Or (0 –errno) on failure



COMP 790: OS Implementation

Absolute vs. Relative Paths
• Each process has a current root and working 

directory
– Stored in current->fs-> (fs, pwd---respectively)
– Specifically, these are dentry pointers (not strings)
– Note that these are shared by threads

• Why have a current root directory?
– Some programs are ‘chroot jailed’ and should not be able 

to access anything outside of the directory



COMP 790: OS Implementation

More on paths
• An absolute path starts with the ‘/’ character
– E.g., /home/porter/foo.txt, /lib/libc.so

• A relative path starts with anything else:
– E.g., vfs.pptx, ../../etc/apache2.conf

• First character dictates where in the dcache to start 
searching for a path



COMP 790: OS Implementation

Search
• Executes in a loop, starting with the root directory or 

the current working directory
• Treats ‘/’ character in the path as a component 

delimiter
• Each iteration looks up part of the path
• E.g., ‘/home/porter/foo’ would look up ‘home’, 

‘porter’, then ‘foo’, starting at /



COMP 790: OS Implementation

Detail (iteration 1)
• For current dentry (/), dereference the inode
• Check access permission (recall, mode is stored in 

inode)
– Use a permission() function pointer associated with the 

inode – can be overridden by a security module (such as 
SeLinux, or AppArmor), or the file system

• If ok, look at next path component (/home)



COMP 790: OS Implementation

Detail (2)
• Some special cases:
– If next component is a ‘.’, just skip to next component
– If next component is a ‘..’, try to move up to parent

• Catch the special case where the current dentry is the process root 
directory and treat this as a no-op

• If not a ‘.’ or ‘..’:
– Compute a hash value to find bucket in d_hash table
– Hash is based on full path (e.g., /home/foo, not ‘foo’)
– Search the d_hash bucket at this hash value



COMP 790: OS Implementation

Detail (3)
• If there isn’t a dentry in the hash bucket, calls the 

lookup() method on parent inode (provided by FS), to 
read the dentry from disk
– Or the network, or kernel data structures…

• If found, check whether it is a symbolic link
– If so, call inode->readlink() (also provided by FS) to get the 

path stored in the symlink
– Then continue next iteration

• If not a symlink, check if it is a directory
– If not a directory and not last element, we have a bad path



COMP 790: OS Implementation

Iteration 2
• We have dentry/inode for /home, now finding porter
• Check permission in /home
• Hash /home/porter, find dentry
• Confirm not ‘.’, ‘..’, or a symlink
• Confirm is a directory
• Recur with dentry/inode for /home/porter, search 

for foo



COMP 790: OS Implementation

Symlink problems
• What if /home/porter/foo is a symlink to ‘foo’?
– Kernel gets in an infinite loop

• Can be more subtle:
– foo -> bar
– bar -> baz
– baz -> foo



COMP 790: OS Implementation

Preventing infinite recursion
• More simple heuristics
• If more than 40 symlinks resolved, quit with –ELOOP
• If more than 6 symlinks resolved in a row without a 

non-symlink inode, quit with –ELOOP
– Maybe add some special logic for obvious self-references

• Can prevent execution of a legitimate 41 symlink
path
– Generally considered reasonable



COMP 790: OS Implementation

Back to open()
• Key tasks:
– Map a human-readable path name to an inode
– Check access permissions, from / to the file
– Possibly create or truncate the file (O_CREAT, O_TRUNC)
– Create a file descriptor 

• We’ve seen how steps 1 and 2 are done



COMP 790: OS Implementation

Creation
• Handled as part of search; treat last item specially
– Usually, if an item isn’t found, search returns an error

• If last item (foo) exists and O_EXCL flag set, fail
– If O_EXCL is not set, return existing dentry

• If it does not exist, call fs create method to make a 
new inode and dentry
– This is then returned



COMP 790: OS Implementation

File descriptors
• User-level file descriptors are an index into a process-

local table of struct files
• A struct file stores a dentry pointer, an offset into the 

file, and caches the access mode (read/write/both)
– The table also tracks which entries are valid

• Open marks a free table entry as ‘in use’
– If full, create a new table 2x the size and copy old one
– Allocates a new file struct and puts a pointer in table



COMP 790: OS Implementation

Truncation
• The O_TRUNC flag causes the file to be truncated to 

zero bytes at the end of opening
• This is done with a routine that frees cached pages, 

updates inode size, and calls an FS-provided 
truncate() hook
– This routine generally updates on-disk data, freeing stored 

blocks



COMP 790: OS Implementation

Open questions?



COMP 790: OS Implementation

Now on to read
• int read(int fd, void *buf, size_t bytes);

• fd: File descriptor index
• buf: Buffer kernel writes the read data into
• bytes: Number of bytes requested
• Returns: bytes read (if >= 0), or –errno



COMP 790: OS Implementation

Simple steps
• Translate int fd to a struct file (if valid)
– Check cached permissions in the file
– Increase reference count

• Validate that sizeof(buf) >= bytes requested
– And that buf is a valid address

• Do read() routine associated with file (FS-specific)
• Drop refcount, return bytes read



COMP 790: OS Implementation

Hard part: Getting data
• In addition to an offset, the file structure caches a 

pointer to the address space associated with the file
– Recall: this includes the radix tree of in-memory pages

• Search the radix tree for the appropriate page of data
• If not found, or PG_uptodate flag not set, re-read 

from disk
• If found, copy into the user buffer (up to inode-

>i_size)



COMP 790: OS Implementation

Requesting a page read
• First, the page must be locked
– Atomically set a lock bit in the page descriptor
– If this fails, the process sleeps until page is unlocked

• Once the page is locked, double-check that no one 
else has re-read from disk before locking the page
– Also, check that no one has freed the page while we were 

waiting (by changing the mapping field)

• Invoke the address_space->readpage() method (set 
by FS)



COMP 790: OS Implementation

Generic readpage
• Recall that most disk blocks are 512 bytes, yet pages 

are 4k
– Block size stored in inode (blkbits)

• Each file system provides a get_block() routine that 
gives the logical block number on disk

• Check for edge cases (like a sparse file with missing 
blocks on disk)



COMP 790: OS Implementation

More readpage
• If the blocks are contiguous on disk, read entire page 

as a batch
• If not, read each block one at a time
• These block requests are sent to the backing device 

I/O scheduler (recall lecture on I/O schedulers)



COMP 790: OS Implementation

After readpage
• Mark the page accessed (for LRU reclaiming)
• Unlock the page
• Then copy the data, update file access time, advance 

file offset, etc.



COMP 790: OS Implementation

Copying data to user
• Kernel needs to be sure that buffer is a valid address
• How to do it?
– Can walk appropriate page table entries

• What could go wrong?
– Concurrent munmap from another thread
– Page might be lazy allocated by kernel



COMP 790: OS Implementation

Trick
• What if we don’t do all of this validation?
– Looks like kernel had a page fault
– Usually REALLY BAD

• Idea: set a kernel flag that says we are in 
copy_to_user
– If a page fault happens for a user address, don’t panic
– Just handle demand faults
– If the page is really bad, write an error code into a register 

so that it breaks the write loop; check after return



COMP 790: OS Implementation

Benefits
• This trick actually speeds up the common case (buf is 

ok)
• Avoids complexity of handling weird race conditions
• Still need to be sure that buf address isn’t in the 

kernel



COMP 790: OS Implementation

Summary
• Goal: Synthesize key VFS concepts, data structures, 

and optimizations with concrete examples
• Understand key steps in open and read system calls


