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Lecture Goal
• Understand the hardware tools available on a 

modern x86 processor for manipulating and 
protecting memory

• Lab 2: You will program this hardware
• Apologies: Material can be a bit dry, but important
– Plus, slides will be good reference

• But, cool tech tricks:
– How does thread-local storage (TLS) work?
– An actual (and tough) Microsoft interview question
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Undergrad Review
• What is:
– Virtual memory?
– Segmentation?
– Paging?
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Memory Mapping

Physical Memory

Process 1

Virtual Memory
// Program expects (*x) 
//  to always be at 
//  address 0x1000
int *x = 0x1000; 

0x1000

Only one physical 
address 0x1000!!

Process 2

Virtual Memory
0x1000 0x1000

5



COMP 630: OS Implementation

Two System Goals
1) Provide an abstraction of contiguous, isolated virtual 
memory to a program
2) Prevent illegal operations
– Prevent access to other application or OS memory
– Detect failures early (e.g., segfault on address 0)
– More recently, prevent exploits that try to execute 

program data
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Outline
• x86 processor modes
• x86 segmentation
• x86 page tables
• Advanced Features
• Interesting applications/problems
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x86 Processor Modes
• Real mode – walks and talks like a really old x86 chip
– State at boot
– 20-bit address space, direct physical memory access

• 1 MB of usable memory

– Segmentation available (no paging)

• Protected mode – Standard 32-bit x86 mode
– Segmentation and paging
– Privilege levels (separate user and kernel)
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x86 Processor Modes
• Long mode – 64-bit mode (aka amd64, x86_64, etc.)
– Very similar to 32-bit mode (protected mode), but bigger
– Restrict segmentation use
– Garbage collect deprecated instructions

• Chips can still run in protected mode with old instructions

• Even more obscure modes we won’t discuss today
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Translation Overview

• Segmentation cannot be disabled!
– But can be a no-op (aka flat mode)

0xdeadbeef

Virtual Address Linear Address Physical Address

0x0eadbeef 0x6eadbeefSegmentation Paging

Protected/Long mode only

10



COMP 630: OS Implementation

x86 Segmentation
• A segment has:
– Base address (linear address)
– Length
– Permissions
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Programming model
• Segments for: code, data, stack, “extra”
– A program can have up to 6 total segments
– Segments identified by registers: cs, ds, ss, es, fs, gs

• Prefix all memory accesses with desired segment:
– mov eax, ds:0x80  (load offset 0x80 from data into eax)
– jmp cs:0xab8          (jump execution to code offset 0xab8)
– mov ss:0x40, ecx (move ecx to stack offset 0x40)
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Segmented Programming Pseudo-example

// global int x = 1
int y; // stack
if (x) {

y = 1;
printf (“Boo”);

} else
y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

ss:y = 1;

cs:printf (ds:“Boo”);

} else

ss:y = 0;

Segments would be used in assembly, not C 13
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Programming, cont.
• This is cumbersome, so infer code, data and stack 

segments by instruction type:
– Control-flow instructions use code segment (jump, call)
– Stack management (push/pop) uses stack
– Most loads/stores use data segment

• Extra segments (es, fs, gs) must be used explicitly

14



COMP 630: OS Implementation

Segment management
• For safety (without paging), only the OS should 

define segments.  Why?
• Two segment tables the OS creates in memory:
– Global – any process can use these segments
– Local – segment definitions for a specific process

• How does the hardware know where they are?
– Dedicated registers: gdtr and ldtr
– Privileged instructions: lgdt, lldt
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Segment registers

• Set by the OS on fork, context switch, etc.

Table Index (13 bits) Global or Local 
Table? (1 bit) Ring (2 bits)

16



COMP 630: OS Implementation

Segments Illustrated

0x123000,
1MB

0,
0B

0x423000,
1MB …gdtr

cs: 0x8 ds: 0xf

Low 3 bits 0
Index 1 (4th bit)

call cs:0xf150 0x123000 + 0xf150 
= 0x123150
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Sample Problem: 
(Old) JOS Bootloader

• Suppose my kernel is compiled to be in upper 256 
MB of a 32-bit address space (i.e., 0xf0100000)
– Common to put OS kernel at top of address space

• Bootloader starts in real mode (only 1MB of 
addressable physical memory)

• Bootloader loads kernel at 0x00100000 
– Can’t address 0xf0100000
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Booting problem
• Kernel needs to set up and manage its own page 

tables
– Paging can translate 0xf0100000 to 0x00100000

• But what to do between the bootloader and kernel 
code that sets up paging?
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Segmentation to the Rescue!
• kern/entry.S:
–What is this code doing?

mygdt:
SEG_NULL                                # null seg
SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg
SEG(STA_W, -KERNBASE, 0xffffffff)       # data seg
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JOS ex 1, cont.
SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg

jmp 0xf01000db8   # virtual addr. (implicit cs seg)

jmp (0xf01000db8 + -0xf0000000)

jmp 0x001000db8   # linear addr.

Execute and 
Read 

permission 

Offset
-0xf0000000 

Segment Length 
(4 GB)
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Flat segmentation
• The above trick is used for booting.  We eventually 

want to use paging.
• How can we make segmentation a no-op?
• From kern/pmap.c:
// 0x8 - kernel code segment

[GD_KT >> 3] = SEG(STA_X | STA_R, 0x0, 0xffffffff, 0),

Execute and 
Read 

permission 

Offset
0x00000000 

Segment Length 
(4 GB) Ring 0
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Outline
• x86 processor modes
• x86 segmentation
• x86 page tables
• Advanced Features
• Interesting applications/problems
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Paging Model
• 32 (or 64) bit address space.
• Arbitrary mapping of linear to physical pages
• Pages are most commonly 4 KB
– Newer processors also support page sizes of 2 MB and 1 

GB
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How it works
• OS creates a page table
– Any old page with entries formatted properly
– Hardware interprets entries

• cr3 register points to the current page table
– Only ring0 can change cr3
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Translation Overview

From Intel 80386 Reference Programmer’s Manual 26
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Example
0xf1084150

0x3b4 0x84 0x150

Page Dir Offset
(Top 10 addr bits:

0xf10 >> 2)

Page Table Offset
(Next 10 addr bits)

Physical Page Offset
(Low 12 addr bits)

cr3

Entry at cr3+0x3b4 * 
sizeof(PTE) Entry at 0x84 * 

sizeof(PTE)
Data we want at 

offset 0x150
27
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Page Table Entries

cr3

0x00384 PTE_W|PTE_P|PTE_U

0 0

0x28370 PTE_W|PTE_P

0 0

0 0

0 0

0 0

0 0

Physical Address 
Upper (20 bits) Flags (12 bits)

28



COMP 630: OS Implementation

Page Table Entries
• Top 20 bits are the physical address of the mapped 

page
– Why 20 bits?
– 4k page size == 12 bits of offset

• Lower 12 bits for flags
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Page flags
• 3 for OS to use however it likes
• 4 reserved by Intel, just in case
• 3 for OS to CPU metadata
– User/vs kernel page, 
– Write permission, 
– Present bit (so we can swap out pages)

• 2 for CPU to OS metadata
– Dirty (page was written), Accessed (page was read)
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Page Table Entries

cr3

0x00384 PTE_W|PTE_P|PTE_U

0 0

0x28370 PTE_W|PTE_P|PTE_DIRTY

… …

Physical Address 
Upper (20 bits) Flags (12 bits)

User, writable, 
present

No mapping

Writeable, kernel-only, present, 
and dirty

(Dirty set by CPU on write)
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Back of the envelope
• If a page is 4K and an entry is 4 bytes, how many 

entries per page?
– 1k

• How large of an address space can 1 page represent?
– 1k entries * 1page/entry * 4K/page = 4MB

• How large can we get with a second level of 
translation?
– 1k tables/dir * 1k entries/table * 4k/page = 4 GB
– Nice that it works out that way!
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Challenge questions
• What is the space overhead of paging?
– I.e., how much memory goes to page tables for a 4 GB 

address space?

• What is the optimal number of levels for a 64 bit 
page table?

• When would you use a 2 MB or 1 GB page size?
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TLB Entries
• The CPU caches address translations in the TLB
– Translation Lookaside Buffer

cr3

Page Traversal is Slow

Virt Phys
0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Table Lookup is Fast
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TLB Entries
• The CPU caches address translations in the TLB
• Translation Lookaside BufferThe TLB is not coherent 

with memory, meaning:
– If you change a PTE, you need to manually invalidate 

cached values
– See the tlb_invalidate() function in JOS
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TLB Entries
• The TLB is not coherent with memory, meaning:
– If you change a PTE, you need to manually invalidate 

cached values
– See the tlb_invalidate() function in JOS

cr3 Virt Phys
0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Same
Virt Addr.

No 
Change!!! 36
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Outline
• x86 processor modes
• x86 segmentation
• x86 page tables
• Advanced Features
• Interesting applications/problems
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Physical Address Extension (PAE)
• Period with 32-bit machines + >4GB RAM (2000’s)
• Essentially, an early deployment of a 64-bit page 

table format
• Any given process can only address 4GB
– Including OS!

• Page tables themselves can address >4GB of physical 
pages
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No execute (NX) bit
• Many security holes arise from bad input
– Tricks program to jump to unintended address
– That happens to be on heap or stack
– And contains bits that form malware

• Idea: execute protection can catch these
– Feels a bit like code segment, no?

• Bit 63 in 64-bit page tables (or 32 bit + PAE)
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Nested page tables
• Paging tough for early Virtual Machine 

implementations
– Can’t trust a guest OS to correctly modify pages

• So, add another layer of paging between host-
physical and guest-physical
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And now the fun stuff…
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Thread-Local Storage (TLS)
// Global

__thread int tid; 
…

printf (“my thread id is %d\n”, tid);

Identical code gets 
different value in each 

thread
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Thread-local storage (TLS)
• Convenient abstraction for per-thread variables
• Code just refers to a variable name, accesses private 

instance
• Example: Windows stores the thread ID (and other 

info) in a thread environment block (TEB)
– Same code in any thread to access
– No notion of a thread offset or id

• How to do this?
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TLS implementation
• Map a few pages per thread into a segment
• Use an “extra” segmentation register
– Usually gs
– Windows TEB in fs

• Any thread accesses first byte of TLS like this:
mov eax, gs:(0x0)
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TLS Illustration

Tid = 0 …

0xb0001000

Tid = 1 Tid = 2

0xb0002000 0xb0003000

printf (“My thread id is %d\n”,  gs:tid);

Thread 0 Registers
gs: = 0xb0001000

Thread 1 Registers
gs: = 0xb0002000

Thread 2 Registers
gs: = 0xb0003000

Set by the OS
kernel during 

context switch
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Viva segmentation!
• My undergrad OS course treated segmentation as a 

historical artifact
– Yet still widely (ab)used
– Also used for sandboxing in vx32, Native Client
– Used to implement early versions of VMware

• Counterpoint: TLS hack is just compensating for lack 
of general-purpose registers

• Either way, all but fs and gs are deprecated in x64
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Microsoft interview question
• Suppose I am on a low-memory x86 system (<4MB).  

I don’t care about swapping or addressing more than 
4MB.

• How can I keep paging space overhead at one page?
– Recall that the CPU requires 2 levels of addr. translation
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Solution sketch
• A 4MB address space will only use the low 22 bits of 

the address space.
– So the first level translation will always hit entry 0

• Map the page table’s physical address at entry 0
– First translation will “loop” back to the page table
– Then use page table normally for 4MB space

• Assumes correct programs will not read address 0
– Getting null pointers early is nice
– Challenge: Refine the solution to still get null pointer 

exceptions
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Conclusion
• Lab 2 will be fun
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