
COMP 630: OS Implementation

x86 Memory Protection and
Translation

Don Porter

1

COMP 630: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s
Lecture

Today’s Lecture: Focus on Hardware ABI 2

COMP 630: OS Implementation

Lecture Goal
• Understand the hardware tools available on a

modern x86 processor for manipulating and
protecting memory

• Lab 2: You will program this hardware
• Apologies: Material can be a bit dry, but important
– Plus, slides will be good reference

• But, cool tech tricks:
– How does thread-local storage (TLS) work?
– An actual (and tough) Microsoft interview question

3

COMP 630: OS Implementation

Undergrad Review
• What is:
– Virtual memory?
– Segmentation?
– Paging?

4

COMP 630: OS Implementation

Memory Mapping

Physical Memory

Process 1

Virtual Memory
// Program expects (*x)
// to always be at
// address 0x1000
int *x = 0x1000;

0x1000

Only one physical
address 0x1000!!

Process 2

Virtual Memory
0x1000 0x1000

5

COMP 630: OS Implementation

Two System Goals
1) Provide an abstraction of contiguous, isolated virtual
memory to a program
2) Prevent illegal operations
– Prevent access to other application or OS memory
– Detect failures early (e.g., segfault on address 0)
– More recently, prevent exploits that try to execute

program data

6

COMP 630: OS Implementation

Outline
• x86 processor modes
• x86 segmentation
• x86 page tables
• Advanced Features
• Interesting applications/problems

7

COMP 630: OS Implementation

x86 Processor Modes
• Real mode – walks and talks like a really old x86 chip
– State at boot
– 20-bit address space, direct physical memory access

• 1 MB of usable memory

– Segmentation available (no paging)

• Protected mode – Standard 32-bit x86 mode
– Segmentation and paging
– Privilege levels (separate user and kernel)

8

COMP 630: OS Implementation

x86 Processor Modes
• Long mode – 64-bit mode (aka amd64, x86_64, etc.)
– Very similar to 32-bit mode (protected mode), but bigger
– Restrict segmentation use
– Garbage collect deprecated instructions

• Chips can still run in protected mode with old instructions

• Even more obscure modes we won’t discuss today

9

COMP 630: OS Implementation

Translation Overview

• Segmentation cannot be disabled!
– But can be a no-op (aka flat mode)

0xdeadbeef

Virtual Address Linear Address Physical Address

0x0eadbeef 0x6eadbeefSegmentation Paging

Protected/Long mode only

10

COMP 630: OS Implementation

x86 Segmentation
• A segment has:
– Base address (linear address)
– Length
– Permissions

11

COMP 630: OS Implementation

Programming model
• Segments for: code, data, stack, “extra”
– A program can have up to 6 total segments
– Segments identified by registers: cs, ds, ss, es, fs, gs

• Prefix all memory accesses with desired segment:
– mov eax, ds:0x80 (load offset 0x80 from data into eax)
– jmp cs:0xab8 (jump execution to code offset 0xab8)
– mov ss:0x40, ecx (move ecx to stack offset 0x40)

12

COMP 630: OS Implementation

Segmented Programming Pseudo-example

// global int x = 1
int y; // stack
if (x) {

y = 1;
printf (“Boo”);

} else
y = 0;

ds:x = 1; // data

ss:y; // stack

if (ds:x) {

ss:y = 1;

cs:printf (ds:“Boo”);

} else

ss:y = 0;

Segments would be used in assembly, not C 13

COMP 630: OS Implementation

Programming, cont.
• This is cumbersome, so infer code, data and stack

segments by instruction type:
– Control-flow instructions use code segment (jump, call)
– Stack management (push/pop) uses stack
– Most loads/stores use data segment

• Extra segments (es, fs, gs) must be used explicitly

14

COMP 630: OS Implementation

Segment management
• For safety (without paging), only the OS should

define segments. Why?
• Two segment tables the OS creates in memory:
– Global – any process can use these segments
– Local – segment definitions for a specific process

• How does the hardware know where they are?
– Dedicated registers: gdtr and ldtr
– Privileged instructions: lgdt, lldt

15

COMP 630: OS Implementation

Segment registers

• Set by the OS on fork, context switch, etc.

Table Index (13 bits) Global or Local
Table? (1 bit) Ring (2 bits)

16

COMP 630: OS Implementation

Segments Illustrated

0x123000,
1MB

0,
0B

0x423000,
1MB …gdtr

cs: 0x8 ds: 0xf

Low 3 bits 0
Index 1 (4th bit)

call cs:0xf150 0x123000 + 0xf150
= 0x123150

17

COMP 630: OS Implementation

Sample Problem:
(Old) JOS Bootloader

• Suppose my kernel is compiled to be in upper 256
MB of a 32-bit address space (i.e., 0xf0100000)
– Common to put OS kernel at top of address space

• Bootloader starts in real mode (only 1MB of
addressable physical memory)

• Bootloader loads kernel at 0x00100000
– Can’t address 0xf0100000

18

COMP 630: OS Implementation

Booting problem
• Kernel needs to set up and manage its own page

tables
– Paging can translate 0xf0100000 to 0x00100000

• But what to do between the bootloader and kernel
code that sets up paging?

19

COMP 630: OS Implementation

Segmentation to the Rescue!
• kern/entry.S:
–What is this code doing?

mygdt:
SEG_NULL # null seg
SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg
SEG(STA_W, -KERNBASE, 0xffffffff) # data seg

20

COMP 630: OS Implementation

JOS ex 1, cont.
SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg

jmp 0xf01000db8 # virtual addr. (implicit cs seg)

jmp (0xf01000db8 + -0xf0000000)

jmp 0x001000db8 # linear addr.

Execute and
Read

permission

Offset
-0xf0000000

Segment Length
(4 GB)

21

COMP 630: OS Implementation

Flat segmentation
• The above trick is used for booting. We eventually

want to use paging.
• How can we make segmentation a no-op?
• From kern/pmap.c:
// 0x8 - kernel code segment

[GD_KT >> 3] = SEG(STA_X | STA_R, 0x0, 0xffffffff, 0),

Execute and
Read

permission

Offset
0x00000000

Segment Length
(4 GB) Ring 0

22

COMP 630: OS Implementation

Outline
• x86 processor modes
• x86 segmentation
• x86 page tables
• Advanced Features
• Interesting applications/problems

23

COMP 630: OS Implementation

Paging Model
• 32 (or 64) bit address space.
• Arbitrary mapping of linear to physical pages
• Pages are most commonly 4 KB
– Newer processors also support page sizes of 2 MB and 1

GB

24

COMP 630: OS Implementation

How it works
• OS creates a page table
– Any old page with entries formatted properly
– Hardware interprets entries

• cr3 register points to the current page table
– Only ring0 can change cr3

25

COMP 630: OS Implementation

Translation Overview

From Intel 80386 Reference Programmer’s Manual 26

COMP 630: OS Implementation

Example
0xf1084150

0x3b4 0x84 0x150

Page Dir Offset
(Top 10 addr bits:

0xf10 >> 2)

Page Table Offset
(Next 10 addr bits)

Physical Page Offset
(Low 12 addr bits)

cr3

Entry at cr3+0x3b4 *
sizeof(PTE) Entry at 0x84 *

sizeof(PTE)
Data we want at

offset 0x150
27

COMP 630: OS Implementation

Page Table Entries

cr3

0x00384 PTE_W|PTE_P|PTE_U

0 0

0x28370 PTE_W|PTE_P

0 0

0 0

0 0

0 0

0 0

Physical Address
Upper (20 bits) Flags (12 bits)

28

COMP 630: OS Implementation

Page Table Entries
• Top 20 bits are the physical address of the mapped

page
– Why 20 bits?
– 4k page size == 12 bits of offset

• Lower 12 bits for flags

29

COMP 630: OS Implementation

Page flags
• 3 for OS to use however it likes
• 4 reserved by Intel, just in case
• 3 for OS to CPU metadata
– User/vs kernel page,
– Write permission,
– Present bit (so we can swap out pages)

• 2 for CPU to OS metadata
– Dirty (page was written), Accessed (page was read)

30

COMP 630: OS Implementation

Page Table Entries

cr3

0x00384 PTE_W|PTE_P|PTE_U

0 0

0x28370 PTE_W|PTE_P|PTE_DIRTY

… …

Physical Address
Upper (20 bits) Flags (12 bits)

User, writable,
present

No mapping

Writeable, kernel-only, present,
and dirty

(Dirty set by CPU on write)

31

COMP 630: OS Implementation

Back of the envelope
• If a page is 4K and an entry is 4 bytes, how many

entries per page?
– 1k

• How large of an address space can 1 page represent?
– 1k entries * 1page/entry * 4K/page = 4MB

• How large can we get with a second level of
translation?
– 1k tables/dir * 1k entries/table * 4k/page = 4 GB
– Nice that it works out that way!

32

COMP 630: OS Implementation

Challenge questions
• What is the space overhead of paging?
– I.e., how much memory goes to page tables for a 4 GB

address space?

• What is the optimal number of levels for a 64 bit
page table?

• When would you use a 2 MB or 1 GB page size?

33

COMP 630: OS Implementation

TLB Entries
• The CPU caches address translations in the TLB
– Translation Lookaside Buffer

cr3

Page Traversal is Slow

Virt Phys
0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Table Lookup is Fast

34

COMP 630: OS Implementation

TLB Entries
• The CPU caches address translations in the TLB
• Translation Lookaside BufferThe TLB is not coherent

with memory, meaning:
– If you change a PTE, you need to manually invalidate

cached values
– See the tlb_invalidate() function in JOS

35

COMP 630: OS Implementation

TLB Entries
• The TLB is not coherent with memory, meaning:
– If you change a PTE, you need to manually invalidate

cached values
– See the tlb_invalidate() function in JOS

cr3 Virt Phys
0xf0231000 0x1000

0x00b31000 0x1f000

0xb0002000 0xc1000

- -

Same
Virt Addr.

No
Change!!! 36

COMP 630: OS Implementation

Outline
• x86 processor modes
• x86 segmentation
• x86 page tables
• Advanced Features
• Interesting applications/problems

37

COMP 630: OS Implementation

Physical Address Extension (PAE)
• Period with 32-bit machines + >4GB RAM (2000’s)
• Essentially, an early deployment of a 64-bit page

table format
• Any given process can only address 4GB
– Including OS!

• Page tables themselves can address >4GB of physical
pages

38

COMP 630: OS Implementation

No execute (NX) bit
• Many security holes arise from bad input
– Tricks program to jump to unintended address
– That happens to be on heap or stack
– And contains bits that form malware

• Idea: execute protection can catch these
– Feels a bit like code segment, no?

• Bit 63 in 64-bit page tables (or 32 bit + PAE)

39

COMP 630: OS Implementation

Nested page tables
• Paging tough for early Virtual Machine

implementations
– Can’t trust a guest OS to correctly modify pages

• So, add another layer of paging between host-
physical and guest-physical

40

COMP 630: OS Implementation

And now the fun stuff…

41

COMP 630: OS Implementation

Thread-Local Storage (TLS)
// Global

__thread int tid;
…

printf (“my thread id is %d\n”, tid);

Identical code gets
different value in each

thread

42

COMP 630: OS Implementation

Thread-local storage (TLS)
• Convenient abstraction for per-thread variables
• Code just refers to a variable name, accesses private

instance
• Example: Windows stores the thread ID (and other

info) in a thread environment block (TEB)
– Same code in any thread to access
– No notion of a thread offset or id

• How to do this?

43

COMP 630: OS Implementation

TLS implementation
• Map a few pages per thread into a segment
• Use an “extra” segmentation register
– Usually gs
– Windows TEB in fs

• Any thread accesses first byte of TLS like this:
mov eax, gs:(0x0)

44

COMP 630: OS Implementation

TLS Illustration

Tid = 0 …

0xb0001000

Tid = 1 Tid = 2

0xb0002000 0xb0003000

printf (“My thread id is %d\n”, gs:tid);

Thread 0 Registers
gs: = 0xb0001000

Thread 1 Registers
gs: = 0xb0002000

Thread 2 Registers
gs: = 0xb0003000

Set by the OS
kernel during

context switch

45

COMP 630: OS Implementation

Viva segmentation!
• My undergrad OS course treated segmentation as a

historical artifact
– Yet still widely (ab)used
– Also used for sandboxing in vx32, Native Client
– Used to implement early versions of VMware

• Counterpoint: TLS hack is just compensating for lack
of general-purpose registers

• Either way, all but fs and gs are deprecated in x64

46

COMP 630: OS Implementation

Microsoft interview question
• Suppose I am on a low-memory x86 system (<4MB).

I don’t care about swapping or addressing more than
4MB.

• How can I keep paging space overhead at one page?
– Recall that the CPU requires 2 levels of addr. translation

47

COMP 630: OS Implementation

Solution sketch
• A 4MB address space will only use the low 22 bits of

the address space.
– So the first level translation will always hit entry 0

• Map the page table’s physical address at entry 0
– First translation will “loop” back to the page table
– Then use page table normally for 4MB space

• Assumes correct programs will not read address 0
– Getting null pointers early is nice
– Challenge: Refine the solution to still get null pointer

exceptions

48

COMP 630: OS Implementation

Conclusion
• Lab 2 will be fun

49

