
3/1/20

1

COMP 790: OS Implementation

Read-Copy Update
(RCU)

Don Porter

1

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture

2

COMP 790: OS Implementation

RCU in a nutshell
• Think about data structures that are mostly read,

occasionally written
– Like the Linux dcache

• RW locks allow concurrent reads
– Still require an atomic decrement of a lock counter
– Atomic ops are expensive

• Idea: Only require locks for writers; carefully update
data structure so readers see consistent views of
data

3

COMP 790: OS Implementation

Motivation
(from Paul McKenney’s Thesis)

Performance of RW
lock only marginally
better than mutex

lock

4

COMP 790: OS Implementation

Principle (1/2)
• Locks have an acquire and release cost
– Substantial, since atomic ops are expensive

• For short critical regions, this cost dominates
performance

5

COMP 790: OS Implementation

Principle (2/2)
• Reader/writer locks may allow critical regions to

execute in parallel
• But they still serialize the increment and decrement

of the read count with atomic instructions
– Atomic instructions performance decreases as more CPUs

try to do them at the same time

• The read lock itself becomes a scalability
bottleneck, even if the data it protects is read 99%
of the time

6

3/1/20

2

COMP 790: OS Implementation

Lock-free data structures
• Some concurrent data structures have been

proposed that don’t require locks
• They are difficult to create if one doesn’t already suit

your needs; highly error prone
• Can eliminate these problems

7

COMP 790: OS Implementation

RCU: Split the difference
• One of the hardest parts of lock-free algorithms is

concurrent changes to pointers
– So just use locks and make writers go one-at-a-time

• But, make writers be a bit careful so readers see a
consistent view of the data structures

• If 99% of accesses are readers, avoid performance-
killing read lock in the common case

8

COMP 790: OS Implementation

Example: Linked lists

A C E

B

Reader goes to B

B’s next
pointer is

uninitialized;
Reader gets a

page fault

Insert(B)
This implementation

needs a lock

9

COMP 790: OS Implementation

Example: Linked lists

A C E

B

Reader goes to C or B-
--either is ok

Insert(B)

10

COMP 790: OS Implementation

Example recap
• Notice that we first created node B, and set up all

outgoing pointers
• Then we overwrite the pointer from A
– No atomic instruction or reader lock needed
– Either traversal is safe
– In some cases, we may need a memory barrier

• Key idea: Carefully update the data structure so that
a reader can never follow a bad pointer
– Writers still serialize using a lock

11

COMP 790: OS Implementation

Example 2: Linked lists

A C E

Reader may still be
looking at C. When

can we delete?

Delete (C)

12

3/1/20

3

COMP 790: OS Implementation

Problem
• We logically remove a node by making it unreachable

to future readers
– No pointers to this node in the list

• We eventually need to free the node’s memory
– Leaks in a kernel are bad!

• When is this safe?
– Note that we have to wait for readers to “move on” down

the list

13

COMP 790: OS Implementation

Worst-case scenario
• Reader follows pointer to node X (about to be freed)
• Another thread frees X
• X is reallocated and overwritten with other data
• Reader interprets bytes in X->next as pointer,

segmentation fault

14

COMP 790: OS Implementation

Quiescence
• Trick: Linux doesn’t allow a process to sleep while

traversing an RCU-protected data structure
– Includes kernel preemption, I/O waiting, etc.

• Idea: If every CPU has called schedule() (quiesced),
then it is safe to free the node
– Each CPU counts the number of times it has called

schedule()
– Put a to-be-freed item on a list of pending frees
– Record timestamp on each CPU
– Once each CPU has called schedule, do the free

15

COMP 790: OS Implementation

Quiescence, cont
• There are some optimizations that keep the per-CPU

counter to just a bit
– Intuition: All you really need to know is if each CPU has

called schedule() once since this list became non-empty
– Details left to the reader

16

COMP 790: OS Implementation

Limitations
• No doubly-linked lists
• Can’t immediately reuse embedded list nodes
– Must wait for quiescence first
– So only useful for lists where an item’s position doesn’t

change frequently
• Only a few RCU data structures in existence

17

COMP 790: OS Implementation

Nonetheless
• Linked lists are the workhorse of the Linux kernel
• RCU lists are increasingly used where appropriate
• Improved performance!

18

3/1/20

4

COMP 790: OS Implementation

Big Picture

• Carefully designed data
structures
– Readers always see

consistent view
• Low-level “helper”

functions encapsulate
complex issues
– Memory barriers
– Quiescence

RCU “library”

Hash
List

Pending
Signals

19

COMP 790: OS Implementation

API
• Drop in replacement for read_lock:
– rcu_read_lock()

• Wrappers such as rcu_assign_pointer() and
rcu_dereference_pointer() include memory barriers

• Rather than immediately free an object, use
call_rcu(object, delete_fn) to do a deferred deletion

20

COMP 790: OS Implementation

Code Example
From fs/binfmt_elf.c

rcu_read_lock();
prstatus->pr_ppid =

task_pid_vnr(rcu_dereference(p->real_parent));
rcu_read_unlock();

21

COMP 790: OS Implementation

Simplified Code Example
From arch/x86/include/asm/rcupdate.h

#define rcu_dereference(p) ({ \

typeof(p) ______p1 = (*(volatile typeof(p)*) &p);\
read_barrier_depends(); // defined by arch \

______p1; // “returns” this value \
})

22

COMP 790: OS Implementation

Code Example
From fs/dcache.c

static void d_free(struct dentry *dentry) {
/* ... Ommitted code for simplicity */
call_rcu(&dentry->d_rcu, d_callback);

}

// After quiescence, call_rcu functions are called
static void d_callback(struct rcu_head *rcu) {

struct dentry *dentry =
container_of(head, struct dentry, d_rcu);

__d_free(dentry); // Real free

}

23

COMP 790: OS Implementation

From McKenney and Walpole, Introducing Technology
into the Linux Kernel: A Case Study

24

3/1/20

5

COMP 790: OS Implementation

Summary
• Understand intuition of RCU
• Understand how to add/delete a list node in RCU
• Pros/cons of RCU

25

