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RCU in a nutshell
• Think about data structures that are mostly read, 

occasionally written
– Like the Linux dcache

• RW locks allow concurrent reads
– Still require an atomic decrement of a lock counter
– Atomic ops are expensive

• Idea: Only require locks for writers; carefully update 
data structure so readers see consistent views of 
data
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Motivation 
(from Paul McKenney’s Thesis)

Performance of RW 
lock only marginally 
better than mutex

lock
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Principle (1/2)
• Locks have an acquire and release cost
– Substantial, since atomic ops are expensive

• For short critical regions, this cost dominates 
performance
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Principle (2/2)
• Reader/writer locks may allow critical regions to 

execute in parallel
• But they still serialize the increment and decrement 

of the read count with atomic instructions
– Atomic instructions performance decreases as more CPUs 

try to do them at the same time

• The read lock itself becomes a scalability 
bottleneck, even if the data it protects is read 99% 
of the time

6



3/1/20

2

COMP 790: OS Implementation

Lock-free data structures
• Some concurrent data structures have been 

proposed that don’t require locks
• They are difficult to create if one doesn’t already suit 

your needs; highly error prone 
• Can eliminate these problems
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RCU: Split the difference
• One of the hardest parts of lock-free algorithms is 

concurrent changes to pointers
– So just use locks and make writers go one-at-a-time

• But, make writers be a bit careful so readers see a 
consistent view of the data structures

• If 99% of accesses are readers, avoid performance-
killing read lock in the common case
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Example: Linked lists

A C E

B

Reader goes to B

B’s next 
pointer is 

uninitialized; 
Reader gets a 

page fault

Insert(B)
This implementation 

needs a lock
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Example: Linked lists

A C E

B

Reader goes to C or B-
--either is ok

Insert(B)
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Example recap
• Notice that we first created node B, and set up all 

outgoing pointers
• Then we overwrite the pointer from A
– No atomic instruction or reader lock needed
– Either traversal is safe
– In some cases, we may need a memory barrier

• Key idea: Carefully update the data structure so that 
a reader can never follow a bad pointer
– Writers still serialize using a lock

11

COMP 790: OS Implementation

Example 2: Linked lists

A C E

Reader may still be 
looking at C.  When 

can we delete?

Delete (C)
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Problem
• We logically remove a node by making it unreachable 

to future readers
– No pointers to this node in the list

• We eventually need to free the node’s memory
– Leaks in a kernel are bad!

• When is this safe?
– Note that we have to wait for readers to “move on” down 

the list

13

COMP 790: OS Implementation

Worst-case scenario
• Reader follows pointer to node X (about to be freed)
• Another thread frees X
• X is reallocated and overwritten with other data
• Reader interprets bytes in X->next as pointer, 

segmentation fault
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Quiescence
• Trick: Linux doesn’t allow a process to sleep while 

traversing an RCU-protected data structure
– Includes kernel preemption, I/O waiting, etc.

• Idea: If every CPU has called schedule() (quiesced), 
then it is safe to free the node
– Each CPU counts the number of times it has called 

schedule()
– Put a to-be-freed item on a list of pending frees
– Record timestamp on each CPU
– Once each CPU has called schedule, do the free 
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Quiescence, cont
• There are some optimizations that keep the per-CPU 

counter to just a bit
– Intuition: All you really need to know is if each CPU has 

called schedule() once since this list became non-empty
– Details left to the reader
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Limitations
• No doubly-linked lists
• Can’t immediately reuse embedded list nodes
– Must wait for quiescence first
– So only useful for lists where an item’s position doesn’t 

change frequently
• Only a few RCU data structures in existence
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Nonetheless
• Linked lists are the workhorse of the Linux kernel
• RCU lists are increasingly used where appropriate
• Improved performance!
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Big Picture

• Carefully designed data 
structures
– Readers always see 

consistent view
• Low-level “helper” 

functions encapsulate 
complex issues
– Memory barriers
– Quiescence

RCU “library”

Hash
List

Pending 
Signals
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API
• Drop in replacement for read_lock:
– rcu_read_lock()

• Wrappers such as rcu_assign_pointer() and 
rcu_dereference_pointer() include memory barriers

• Rather than immediately free an object, use 
call_rcu(object, delete_fn) to do a deferred deletion
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Code Example
From fs/binfmt_elf.c

rcu_read_lock();
prstatus->pr_ppid = 

task_pid_vnr(rcu_dereference(p->real_parent));
rcu_read_unlock();
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Simplified Code Example
From arch/x86/include/asm/rcupdate.h

#define rcu_dereference(p) ({                     \

typeof(p) ______p1 = (*(volatile typeof(p)*) &p);\
read_barrier_depends(); // defined by arch       \

______p1; // “returns” this value                \
})
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Code Example
From fs/dcache.c

static void d_free(struct dentry *dentry) {
/* ... Ommitted code for simplicity */
call_rcu(&dentry->d_rcu, d_callback);

}

// After quiescence, call_rcu functions are called
static void d_callback(struct rcu_head *rcu) {

struct dentry *dentry = 
container_of(head, struct dentry, d_rcu);

__d_free(dentry); // Real free

}
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From McKenney and Walpole, Introducing Technology 
into the Linux Kernel: A Case Study
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Summary
• Understand intuition of RCU
• Understand how to add/delete a list node in RCU
• Pros/cons of RCU
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