
Learn a Command-line Interface
Amodern introduction to age-old sorcery.

Kris Jordan - COMP 730 Spring 23 special edition

ii

Contents

Why a command-line interface? i
0.1 Special Thanks . i

Getting Started iii
0.2 Windows Installation . iii

0.2.1 Update toWindows 10, Version 2004+ iii
0.2.2 InstallingWSL2 . iv
0.2.3 Installing Docker . iv
0.2.4 InstallingWindows Terminal iv
0.2.5 Installing git and Cloning the learncli Repository iv
0.2.6 Beginning a Shell Session . v

0.3 macOS Installation . v
0.3.1 Update to Catalina 10.15.6+ . v
0.3.2 Installing Docker . v
0.3.3 Installing git and Cloning the learncli Repository v
0.3.4 Beginning a Shell Session . vi

0.4 Linux Installation . vi
0.4.1 Cloning the learncli Repository vii
0.4.2 Beginning a Shell Session . vii

1 The Sorcerer’s Shell 1
1.1 Your First Spells . 2
1.2 Learn about a programwith its --help argument 3
1.3 Paginate output with the less program 3
1.4 Read programmanuals with the man program 4
1.5 Print file contents with the cat program 5
1.6 Autocomplete commands with the tab key 5
1.7 Reuse previous commands with the up/down keys 6
1.8 Clear your terminal screen with the clear program 6
1.9 Search and filter text with the grep program 6
1.10 Review your command log with history 9
1.11 End a shell session with the builtin exit command 9
1.12 Command Reference . 9

iii

iv CONTENTS

1.13 Keyboard shortcuts in less . 10

2 Directories, Files, and Paths 11
2.1 Directories . 11
2.2 Absolute Paths . 12
2.3 Print your working directory with the pwd program 13
2.4 Change your working directory with the cd builtin 14
2.5 Relative paths from your working directory 14
2.6 The /mnt/learncli directory is shared with your PC 15
2.7 Create directories with the mkdir program 16
2.8 Copy files with the cp program . 17
2.9 Silent success, noisy errors, and --verbosemode 17
2.10 Hidden “dot files” begin with a . 18
2.11 Long vs short options and case sensitivity 18
2.12 List hidden files with ls --all or ls -a 19
2.13 Parent directory .. and current directory . links 19
2.14 Move or “rename” files with the mv program 21
2.15 List directories recursively with the find program 22
2.16 Delete files with the rm program . 22
2.17 Delete directories with rmdir or recursive rm 23

2.17.1 Delete empty directories with the rmdir program 23
2.17.2 Delete non-empty directories with rm -i --recursive 23

2.18 Delete files and directories with caution 24
2.19 Command Reference . 25

Why a command-line interface?

Computers are machines. Their original intent was to help us do work at previously un-
thinkable scales analyzing large data sets, generating reports, finding patterns, and so
on. As the availability and distribution of computers spread beyond universities and
businesses and into our backpacks and pockets, their widespread use is as much about
accessing and sharing information as it is about doingwork. In this transition,most people
interacting with computers are typically software consumers as opposed to system opera-
tors and software creators.

If you want to succeed as a data-driven manager, an analyst, an engineer, or a scientist, the
ability to effectively operate a computer and develop programswill give you super powers.
The command-line interface popularized by Bell Labs’ Unix system in the 1970s contin-
ues to serve as the foundation of modern operations and development. Despite the ad-
vent of operating systemswith graphical user interfaces such asMicrosoft’sWindows or
Apples macOS, the textual interface of a command-line offers much more power, flexi-
bility, and simpler automation if you’re willing to climb yourway up its steeper learning
curve.

The purpose of this text is to help you gain comfort working at a command-line. It as-
sumes no prior experience and intends to help you establish amental model of the shell,
file system, process model, and important tools that is technically sound without be-
ing pedantically overwhelming. After you understand a handful of key concepts, a new
world of possibilities and capabilities opens up to you.

0.1 Special Thanks
Many colleagues and students provided feedback and corrections to this text. Special
thanks to Madison Huber, Helen Qin, Jeffrey Young, Solomon Duncan, Christina Barta,
Baron Northrup, and Eric Schneider for their suggestions and corrections.

i

ii WHY A COMMAND-LINE INTERFACE?

Getting Started

The examples in these lessons center around a Unix-based operating system. Unix’s
ideas date back to the early 1970s. These ideas have withstood the test of time.

A historical challenge of learning these ideas and skills was gaining access to a system
configured for learning. Nomore!

Thanks to innovative, free, open source software, you can gain access to the same
command-line tool bench used by world class engineers and data scientists, on your
personal computer. The learning exercises in these lessons give you a sandbox: the
programs you run are isolated from your primary operating system and files so as to
avoid any accidental deletion of important files. You are safe to, and encouraged to
experiment!

The sandboxingyou’ll use in these tutorials areprovided throughcontainers. A container
allows you to run programs in a controlled, reproducible environment. Containers were
invented to simplify industrial systems operations and are used as infrastructural build-
ing blocks by Google, Amazon, Facebook, andmore. In the past 10 years, container tech-
nology becamemore user friendly and readily accessible.

Containers offer educational benefits, too. Once containers are up and running on your
personal computer you can quickly and easily replicate the systems, tools, and configu-
rations used throughout these tutorials.

0.2 Windows Installation

0.2.1 Update toWindows 10, Version 2004+

Docker forWindows runsbest onWindowsSubsystem for Linux 2 (WSL2), a feature that
is included in the lastest versions ofWindows but requires some configuration to enable.
Check yourWindows version number before continuing:

Press Windows Button + R, type winver, and press Ok or Enter. You should see at least:

• Version 2004 or later
• Build 19041 or later

iii

iv GETTING STARTED

If it is not, visit the following URL and look for the Windows 10 May 2020 Update area.
Follow the steps needed to upgrade your operating system:

https://www.microsoft.com/software-download/windows10

0.2.2 InstallingWSL2
Microsoft’s instructions for enablingWSL2 have steps that involve “Open PowerShell as
Administrator”. PowerShell is a Windows-specific command-line interface. Running it
as “Administrator” gives it privileges tomodify system settings it couldn’t otherwise. To
do this, youwill need to open your startmenu, search for PowerShell, rightclick on it and
Run as administrator.

Follow Microsoft’s instructions for enabling WSL2 by completing the only the first two
sections of the following guide: https://docs.docker.com/docker-for-windows/wsl/ -
you do not need to install a Linux distribution, or the steps after it.

Update theWSL2kernelby following these instructions: https://docs.microsoft.com/en-
us/windows/wsl/wsl2-kernel

Finally, run Powershell as an Administrator oncemore, and then run the following com-
mands (press enter after each line):

wsl --set-default-version 2
Set-ExecutionPolicy RemoteSigned

0.2.3 Installing Docker
Follow Docker’s instructions to install Docker Desktop Stable:

https://docs.docker.com/docker-for-windows/wsl/#download

You can stop at Step 4 after confirming Docker is using theWSL2 based engine.

0.2.4 InstallingWindows Terminal
The recommendedTerminal software for this course is theWindowsTerminal appmade
byMicrosoft. You can install it from theMicrosoft Store app by searching for “Windows
Terminal”.

0.2.5 Installing git and Cloning the learncli Repository
After installingWindows Terminal, start it normally, not as an administrator.

Confirmwhether you have git installed by running the command:

git --version

If you get an error, please follow the instructions to download and install git here:

https://git-scm.com/downloads

https://www.microsoft.com/software-download/windows10
https://docs.docker.com/docker-for-windows/wsl/
https://docs.microsoft.com/en-us/windows/wsl/wsl2-kernel
https://docs.microsoft.com/en-us/windows/wsl/wsl2-kernel
https://docs.docker.com/docker-for-windows/wsl/#download
https://git-scm.com/downloads

0.3. MACOS INSTALLATION v

Aftergit is installed, restartWindowsTerminalnormally and run the followinggit com-
mand:

git clone https://github.com/comp730-s23/learncli211.git

You’ll learn exactly what this command is doing, andmuchmore, soon!

0.2.6 Beginning a Shell Session
After completing the install steps above, you should be able to navigate into the learn-
cli211directorywith the change directory (cd) commandand then runaPowerShell script
(the .ps1 file) to start up the learncli container. These are the steps you’ll follow in the
future to get back into your learncli container:

cd learncli211
./learncli.ps1 comp730

If all is well, then you will see some UNC CS ASCII art and a learncli$ prompt string
awaiting your command. Woohoo! That’s all you need to accomplish for now.

End your container session by running the command exit command, don’t just
close your TerminalWindow else the container will run in the background.

0.3 macOS Installation

0.3.1 Update to Catalina 10.15.6+
Confirmyourmac operating system isCatalina, version 10.15.6 or greater, by opening the
Spotlight Search and searching forAbout thisMac. If your operating systemversion is not
10.15.6 or greater, click the Software Update… button and install recommended updates.

0.3.2 Installing Docker
To install Docker onmacOS, please follow the official instructions:

https://docs.docker.com/docker-for-mac/install/

The installer may will require administrator permission once, but docker should not al-
ways need to run as an administrator.

0.3.3 Installing git and Cloning the learncli Repository
Open a Terminal via Applications > Utilities > Terminal, or by searching for it in Spotlight
Search.

Run the command:

git --version

If prompted that you need to install git, follow the instructions to install it. If you see an
error, try running xcode-select --install

https://docs.docker.com/docker-for-mac/install/

vi GETTING STARTED

Once git is installed, close andopen anewTerminalwindowand run the following com-
mand. You’ll learnmore about what exactly this is doing soon!

git clone https://github.com/comp730-s23/learncli211.git

0.3.4 Beginning a Shell Session
If you do not have a Terminal window open, go ahead and do open one via Applications >
Utilities > Terminal, or by searching for it in Spotlight Search.

Then, run the following:

cd learncli
./learncli.sh comp730

If all is well, then you will see some UNC CS ASCII art and a learncli$ prompt string
awaiting your command. Woohoo! That’s all you need to accomplish for now.

End your container session by running the command exit command, don’t just
close your TerminalWindow else the container will run in the background.

0.4 Linux Installation
Most Linux distributions, such as Ubuntu and Fedora, now include Docker in their de-
fault package manager. Similiarly, git is a standard package that can be installed on the
command line, if not already present:

In Ubuntu or Debian Linux, type:

sudo apt-get install docker docker-compose git

In Fedora Linux, type:

sudo dnf config-manager --add-repo https://download.docker.com/linux/fedora/docker-ce.repo
sudo dnf install docker-ce docker-ce-cli containerd.io \

docker-compose-plugin docker-compose git
sudo systemctl enable docker

After that, youwill need to add your user account to the docker group. If your user name
is ramses, type:

sudo usermod -aG docker ramses

Important: If you have a graphical window manager, you will then need to reboot your
system for this change to take effect; if you are using command line only (say via SSH,
not just a terminal window in Ubuntu desktop), logging out and back in is sufficient to
refresh your group credentials.

After rebooting, try a test:

docker ps

0.4. LINUX INSTALLATION vii

If you get a permission denied error, something went wrong—seek course staff help. If
it works correctly, you should see output like this:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

If it works, proceed to the next step.

0.4.1 Cloning the learncli Repository
Open a Terminal via Applications > Utilities > Terminal, or by searching for it in Spotlight
Search.

Once git is installed, close andopen anewTerminalwindowand run the following com-
mand. You’ll learnmore about what exactly this is doing soon!

git clone https://github.com/comp730-s23/learncli211.git

0.4.2 Beginning a Shell Session
If you do not have a Terminal window open, go ahead and do open one via Applications >
Utilities > Terminal, or by searching for it in Spotlight Search.

Then, run the following:

cd learncli
./learncli.sh comp730

If all is well, then you will see some UNC CS ASCII art and a learncli$ prompt string
awaiting your command. Woohoo! That’s all you need to accomplish for now.

End your container session by running the command exit command, don’t just
close your TerminalWindow else the container will run in the background.

viii GETTING STARTED

Chapter 1

The Sorcerer’s Shell

Imagine awooden stick, a couple feet long, mostly straight, and tapered at one end. Bor-
ing, right?

Now imagine a sorcerer’s wand in the hand of a student at a wizarding school on the
brink of casting her first spell. It’s the same stick.

Welcome to wizarding school!

The line below,which you should see as the last line in your terminal1, is a bash command-
line interfacepromptor,more commonly, a shellprompt. Theblinking cursor awaits your
spell.

learncli$

The power resting beneath your fingertips is unbounded; before you is aworkbench that
for the last 50yearshasbeenused to investigate andpublishgreat research, control large-
scale systems, and build software empires.

Lookingat your terminal screenand reading thesewordsyoumaybe thinking something
is amiss, “…that’s it? Are we really looking at the same thing?”

Yes. Yes, we are.

How you imagine a tool’s powers determines your perceptions of it. Approach learning
the command-line with the same sense of awe and wonder as learning to wield a sor-
cerer’s wand. At the very least you’ll enjoy yourself more. Hopefully, though, you’ll start
to recognize you are on a journey into modern day wizardry.

1If you do not see the learncli$ prompt, please return to the previous chapter, Getting Started, and com-
plete the steps to install the software necessary for these tutorials.

1

2 CHAPTER 1. THE SORCERER’S SHELL

1.1 Your First Spells
At first the shell will look intimidating, but don’t worry! In this section you’ll get a feel
forworking in a shell before diving into its details. The shell is your concierge to a system.
Its purpose is to help you do work by running and operating programs as you wish.

A natural question youmight ask is, “what programs can I run at a command-line?” Far
more than you’d think! Many standard programs, often called system utilities, are avail-
able anytime you are working in a unix-like operating system. These programs are spe-
cial kinds of files stored in specific directories. One such directory is the /bin directory.
The word “bin” is short for “binary program files” and stores files which your computer
can evaluate as a program2. You can list these files with the following ls command:

learncli$ ls /bin
bash grep ntfs-3g.probe su
bunzip2 gunzip ntfscat sync
...

As a convention of these tutorials, what you type is preceded by the prompt string learn-
cli$. Unless otherwise obvious, the commands you type will be lowercase characters
with some spaces, special symbols, and numbers. When you press enter, as you did af-
ter typing ls /bin, the command-line interface reads your command, interprets it, and
attempts to carry out your request.

Look at all of those programs! Don’t stress, you only need to know a few of these to be
productive. Most you’llnever use, unless you specialize in systemsadministration. There
are more utility programs on this system than most people have apps on their phones.
Most command-line programs are intentionally designed to handle one specific kind of
task.

Scan through the output of the command above on your terminal and be sure you find
the file named ls in that list. Did you find it? Does ls ring a bell? It’s the same two
letters as the start of the command you wrote above. This isn’t a coincidence, they’re the
same thing! To list the files in the /bin directory, you executed the ls program which is
a standard utility program found in the /bin directory! The ls program correctly listed
itself as a file in the /bin directory. Listing files in directories is the sole purpose of the ls
program.

Unix program names are short, cryptic, and, at first, mysterious. There are a fewways to
learn what a command-line program is useful for and how to use it. The most common,
consistent advice is to run a program in --help mode or to “read the manual” (often
abbreviated as RTM). This advice is not wrong, but what you are presented may con-
tain terminology beyond your current level of comfort. My recommendation is to first
attempt to read help, then scan the manual and, assuming the command still does not

2These days you will commonly find scripts in directories with bin in their name, too. A script is the source
codeof a programwritten in a scripting language likeBash, Python, JavaScript, or Ruby, and is a just a plain text
file, not a binary file like most system utility programs are. Thinking of directories with bin in their name as
storing “runnable programs”, whether via a scripting language interpreter or as binary files directly executable
at the machine level, is encouraged.

1.2. LEARN ABOUT A PROGRAMWITH ITS --HELP ARGUMENT 3

make sense, then search the internet for plain English explanations. This will help you
learn new vocabulary quickly.

1.2 Learn about a programwith its --help argument
Command-line programs usually have a --help argument that prints some information
about the program’s purpose, usage, and options. When you run a program in --help
mode, the program itself doesn’t attempt to carry out any task other than providing you
with information. Try running lswith a --help argument.

learncli$ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.
...

There is too much text to digest for a quick, casual reading. The list files program, ls,
has around 40 different optional arguments3. Not only are there a lot of specifically pur-
posed command-line programs, each also has a range of options and capabilities. I point
this out because a natural response is to feel overwhelmed, but I want to assure you the
number of concepts you need to know is far less.

1.3 Paginate output with the less program
The --help text for ls is so long its basic usage and description likely scrolled off the top
of your screen. To see less output, or, specifically a single screen of output at a time, use
less.

Try running the following command:

learncli$ ls --help | less

Only one screen of information displayed. When using less, you can press the f button
to scroll down a page at a time, the b button to scroll up a page at a time, and the k and
j buttons to scroll up and down a line a time respectively. Press the q button to quit and
return back to your shell’s prompt.

Use less to paginate any program’s output. After quitting the previous less program
(described above), try using less in conjunction with the previous ls /bin command:

learncli$ ls /bin | less

As you scroll through the list of programs in the /bin directory, note the name of the first
program whose name begins with an l. Yes, less is just another program, like ls. Again,
you can exit lesswith q.

3The ls program dates back to the original Unix operating system in 1969, so it’s 50 years old! For an often-
used program to survive it naturally accumulates features and capabilities to aid its flexibility.

4 CHAPTER 1. THE SORCERER’S SHELL

When you ran the commands using less, the vertical bar | character formed a connec-
tion, called a pipe, between the ls program on the left and the less program on the
right. The pipe supported your first experience composing programs, an important Unix
command-line concept. With pipes, it is easy to connect programs together, to mix and
match the outputs of one program as the inputs of another, leading to a multiplicative
effect on tasks you can carry out. In a simplified, contrived example, imagine having 10
programs capable of producing output data, and 10 programs that “filter”, or process,
data as input, then you have over 100 combined capabilities4 from only 20 programs.

1.4 Read programmanuals with the man program

The secondway to learnmore about aprogram is to read itsmanual. Theprogramto read
the manuals of other programs is the shortened prefix man. Try running the command
below:

learncli$ man ls

Your terminal’s content is replaced with the manual for the ls program. Manual pages
have a consistent, improved formatting over --help. Notice you only see one page at a
time by default. Behind the scenes, the man programuses less to display its information.
Thus, you scroll the manual using the keys you used to navigate less.

Most manuals contain all of the information of the program’s “Help” mode and more.
Goodmanualswill accurately and succinctly describe aprogramandhow touse it. Every
standard program should have manual documentation you can access via man followed
by the program name.

Try reading the name and first few sentences of description for the program we’ll use
next, cat.

learncli$ man cat
NAME

cat - concatenate files and print on the standard output

As mentioned earlier, help text and manual pages can include terminology you may be
unfamiliarwith. The bestway tomake sense of unfamiliar terms is to search the internet.
There is awealth of reference information, tutorials, and example uses of command-line
concepts found on-line. At the time of writing, a simple Google search for what is the cat
command useful for produces 36million results. Without even leaving the results page an
easy to understand synopsis is shown: “cat reads data from the file and gives its content
as output.” Let’s try out cat!

4You can, and occasionally will, create pipelines ofmore than two programs, so the upper limit on combina-
tions is actually much larger.

1.5. PRINT FILE CONTENTSWITH THE CAT PROGRAM 5

1.5 Print file contents with the cat program
Preinstalled on your Learn CLI container is a “dictionary” file containing over 100,000
words. Whereas the ls program is found at the path /bin/ls, the dictionary file is found
at the path /usr/share/dict/words. The next chapter focuses on files, directories, and
paths. For now, try using cat, as shownbelow, to read thewords file and print its output
to your terminal:

cat /usr/share/dict/words

Depending on your computer, it may take a minute for cat to finish; isn’t it impressive
watching a hundred thousand words fly across your screen? The cat program simply
reads through the filewe told it to, from top to bottom, and prints each line out one after
another.

1.6 Autocomplete commandswith the tab key
The shell performsautocompletionwhenyouare typing in a commandandpress the Tab
key on your keyboard. The autocompletion is not like your phone’s, instead it is context
dependent and based on the partial command entered. It only offers valid completions.
Developing muscle memory to press Tab as you enter a command both helps you type
commands faster and increases your confidence in their correctness.

To get a feel for autocompletion of paths with Tab, closely follow these steps at the
learncli$ prompt:

1. Type cat /u and press Tab. You should see the path autocompleted to /usr/.
2. Type s and press Tab once. Nothing happens. Press Tab once again. You should see

there are three valid paths at this point beginning with an s.
3. Type h and press Tab again. You should see the path is now /usr/share/.
4. Type di and press Tab twice. There are two directories in /usr/share beginning with

a di.
5. Type ct and press Tab again. The path completes to include a trailing slash.
6. Type w and press Tab again. The path completes to /usr/share/dict/words and a

space was automatically added after.

In this example, Tabwas autocompleting a file path for you. There are four subtle auto-
completion behaviors illustrated in what you just saw.

1. When there is a single, unambiguous completion for the next part of a path, press-
ing Tabwill insert the characters immediately.

2. When there aremultiple, ambiguous completions, pressingTaboncedoesnothing
and pressing it again lists all of the possible matches.

3. Whenadirectoryname is autocompleted, the shellwill automatically insert a trail-
ing / so that you can begin typing the next part of the path.

4. When a filename is autocompleted, the shell will automatically insert a trailing
space character so that you can begin typing the next argument to the command,
if there is one.

6 CHAPTER 1. THE SORCERER’S SHELL

In addition to file paths, the Tab key can also autocomplete program names, too. Try the
following at an empty learncli$ prompt:

1. Type ca and press Tab twice. _All programs installed in the container beginning
with the letters “ca” are printed. Notice cat is one of them, and cal is another.

2. Typel andpressEnter. Thecalprogramprints a textual calendar representationwith
today’s date highlighted.

There are other instances and programs which support Tab based autocompletion,
but autocompleting paths and program names are the two use cases you’ll use most
frequently.

1.7 Reuse previous commandswith the up/down keys
If you want to read the contents of the dictionary file at your own pace, then you should
pipe the cat command into less. Typing out the entire cat command again, with that
long path, is somewhat tedious. Modifying or adding onto an even longer command
previously run evenmore so.

To avoid the nuisance of retyping earlier commands, the Bash shell allows you to press
theUpandDownkeysonyourkeyboard tomovebackand forthbetweenpreviouslyused
commands in your history. This is frequently useful when you want to tweak or extend
a previous command.

Goahead and try using theUpandDownkeys to reuse the cat /usr/share/dict/words
command. Do you remember how to use a pipe and less to view thewords one screen at
a time? If not, refer back to the previous section and continue once you’ve done so. As a
general rule of thumb, if some command produces toomuch output and is safe to rerun,
then pressing up, typing | less, and pressing enter is faster than trying to scroll your
terminal window itself up to find the start of the command’s output.

1.8 Clear your terminal screenwith the clear program
The clear program clears your terminal screen and resets your prompt to the top of the
terminal. This is useful when a previous command generates a lot of output and you’d
like to “clear your head.” When you are ready to move to your next task, clear your
screen, stand up and stretch, and you’ll return ready for the journey ahead.

1.9 Search and filter text with the grep program
The grep program uses textual patterns, formally called regular expressions, to search for
textual matches. In this section you will encounter a few simple patterns. The little lan-
guage of a regular expression pattern is much more powerful than shown here and dis-
cussed in more depth later on.

When you open themanual pages for grep, in the SYNOPSIS section youwill notice a few
example uses. The first is:

1.9. SEARCH AND FILTER TEXTWITH THE GREP PROGRAM 7

grep [OPTIONS] PATTERN [FILE...]

Two important example conventions are illustrated here. First, you’ll notice two parts of
the usage are surrounded in square brackets: OPTIONS and FILE.... The square brackets
tell you they are optional arguments. You do not need to specify any OPTIONS, and in
these examples youwill not, nor do you need to specify anything for FILE..., though in
the next example you will. The trailing ... after FILE indicates you are able to specify
multiple files one after the other, delimited by spaces, and grep will search each of the
files listed.

learncli$ grep motion /usr/share/dict/words
commotion
commotion's
commotions
demotion
demotion's
demotions
emotion
...

In the example above, there are not any OPTIONS, the PATTERN is “motion”, and the only
FILES... argument is /usr/share/dict/words. Notice only the lines of the dictionary
file containing the string of characters “motion”was printed. This is an exactmatch pat-
tern, not too dissimilar fromwhat you are able to dowhen you searchwithin aweb page
orworddocument. Thepower of regular expressions becomesmore evident as youmake
use of operators. One such example is the ^ character which anchors a pattern to the
“start of a line”.

learncli$ grep ^motion /usr/share/dict/words
motion
motion's
motioned
motioning
motionless
motions

By placing the ^ in the front of the pattern grep only matches lines beginning with the
characters “motion”. Conversely, the $ character anchors a pattern to the “end of a line”.

learncli$ grep motion$ /usr/share/dict/words
commotion
demotion
emotion
locomotion
motion
promotion

Only words ending in “motion” are displayed. The last special character we’ll demon-
strate in this preview of grep is the . character which matches “any character”. Let’s

8 CHAPTER 1. THE SORCERER’S SHELL

combine all three characters into a single pattern that searches for four letterwords start-
ing with a “g” and ending with a “p”.

learncli$ grep ^g..p$ /usr/share/dict/words
gasp
glop
goop
grip
gulp

This ability to find matches in text is useful beyond searching the contents of a file like
a dictionary. What if you wanted to search for file names matching a regular expression
pattern in the output of ls? You could save those file names to a file and use grep as
shownabove, but there’s a betterway. Let’s look at theusage example of greponcemore:

grep [OPTIONS] PATTERN [FILE...]

What does it mean for FILE... to be optional? What does grep search if no file is given
to it? It searches any input piped into it! Let’s try it.

learncli$ ls /bin | grep ^g..p$
grep
gzip

There are two programs in the /bin directory that begin with a g, end with a p, with any
two characters between them. One of them is the grep program itself. The other is gzip,
a program for compressing data. In this example, the ls program listed all of the files in
/bin, those lines of text were piped into grep, which in turn only printed lines matching
the pattern argument specified.

Command-lineprograms thatfilter data, suchasgrep, tend tooperate inoneof twoways.
Theywill either accept a list of files toprocess orwill operate ondatapiped into them. The
ability to provide a list of files is a convenience feature. The ability to process data piped
in is essential and far more powerful. Remember, you already know a program capable
of reading data from files in cat. A common scenario when looking at the contents of
a file with cat is wanting to search for a specific word. As you gain comfort with the
command-line, you will instinctively press up and pipe to grep.

learncli$ cat /usr/share/dict/words | grep ^g..p$
gasp
glop
goop
grip
gulp

As amore elaborate example, let’s connect cat, grep, and less through a series of pipes
to paginate all words in the dictionary containing “fun”.

learncli$ cat /usr/share/dict/words | grep fun | less

1.12. COMMAND REFERENCE 9

1.10 Review your command logwith history
Try typing the command history. What youwill see is the trail of commands you previ-
ously ran. This listing shows the same list the Up/Down buttons draw fromwhen reusing
prior commands. The history command is useful to help recall some sequence of com-
mands you tried before.

The history command is one of very few “built-in” shell commands, meaning it is not
an external program like those you saw in the /bin directory. At this point, for your pur-
poses, this distinction is mostly irrelevant. It is mentioned only to acknowledge a few
commands are built-into the shell, but the vast majority, as you’ve seen in /bin, are pro-
grams defined outside of it.

Composing history’s log of your commands with grep’s ability to search for text is a
useful combination. At some point you will ask yourself, “how did I run that command
the other day?” Equipped with a knowledge of history and grep you can quickly get to
the bottom of it. As a check for your understanding, try finding all of the commands you
just ran which involved the less program5. How about all commands which involved
the grep program6?

1.11 End a shell sessionwith the builtin exit command
To end your learncli shell session, run the exit command7. This command causes the
shell’s process to exit and will return your terminal’s control back to your host PC. From
here you can either issue another exit command to your host’s shell, subsequently end-
ing it, or closing your terminal window.

As you progress through these lessons and want to resume your work following along
with this book, refer to the instructions in the Beginning a Shell Session section of theGet-
ting Started chapter.

1.12 Command Reference

Program or Builtin Description Standalone Usage

ls List Files in Directory ls [PATH]
cat Concatenate or “Read” File cat FILE [FILES...]
less Terminal Paging Program less [FILE]
man Manual Pages man PROGRAM
clear Clear terminal screen clear
history Display history of commands history
grep Filter/“Search” by Regular Expressions grep PATTERN [FILES...]
exit End a shell session exit

5history | grep less
6history | grep grep
7Like history, the exit command is also a built-in shell command.

10 CHAPTER 1. THE SORCERER’S SHELL

1.13 Keyboard shortcuts in less

Key Motion

f Page down
b Page up
j Scroll down
k Scroll up
q Quit

Chapter 2

Directories, Files, and Paths

Projects in the real world are organized in files and directories. Research projects involve
data files, analysis scripts, and generated reports and charts. Programmingprojects have
source code, configuration files, and build scripts. Even games’ graphics and sound as-
sets, leaderboards, and the ability to restore progress from the last time you played, all
rely on files and directories under the hood. A file system helps you keep projects orga-
nized independently from one another.

If you are comfortable with files and folders on your macOS or Windows PC, then you
will notice direct similarities navigating a file system via the command line. Each is a dif-
ferent user interface to the same concepts. These differences incur trade-offs. A graphical
user interface (GUI), such asWindows File Explorer ormacOS’s Finder, is easy to learn be-
cause it only requires comfort with pointing and clicking. Workingwith a file system via
a command-line interface takesmoreeffort to learn, butgivesyoumorepower. UsingaCLI,
you can easily automate repetitive file system tasks, such as renaming 1000s of files from
one file naming convention to another, that would take hours or days to complete using
aGUI. It’s likely you’ve never needed this powerful of automation before, but as you grow
professionally your projects’ size tends to grow with you. This is also true in inverse, as
the scale of work youmanage grows, your career tends to growwith it. Investing time in
learning how to automate work at the command-line interface now can accelerate and
expand your career opportunities in the future.

2.1 Directories
Directories are the fundamental unit of organization in a file system. Every directory can
containotherdirectories in ahierarchical relationship. Directories also containfiles. One
root directory has all other directories and files as its descendants.

The term directory is idiomatic whenworking at the command-line, though you’re likely
familiar with the term folder in macOS andWindows. The words directory and folder are
synonymous. Wewill choose to embrace the term directorymoving forward.

11

12 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

As you know, the program to list the contents of a directory is ls. Previously, you listed
the contents of the /bin directory. It containedmany of the standard system command-
line program files. Try listing the contents of the root directory next:

learncli$ ls /
bin dev home lib64 mnt proc run srv tmp var
boot etc lib media opt root sbin sys usr

Notice thebindirectory is contained in/ (the forwardslash ishowyourefer to the rootdi-
rectory). The file system in your learncli container1 traces its roots back to the original
Unix file systems of the 1970s (macOS’s file system does, as well). The names of directo-
ries in the root directory, such as bin, dev, etc, usr, var, and so on, have been around
since the early days of Unix2. The organizational purpose of these system directories is
not worth concerning yourself over for now.

List the files in the top-level /usr directory. This directory contains “user installed” pro-
grams, source code, and libraries which arewidely useful but not required by the operat-
ing system.

learncli$ ls /usr
bin games include lib local sbin share src

Thepreviouschapterusedgrep toexplore thedictionaryfile storedat/usr/share/dict/words.
Notice in the output of the last command, ls /usr, there was a directory named share.
Also notice the start of the dictionary file beganwith /usr/share. This is no coincidence
and the pattern continues. Try listing the contents of the /usr/share directory.

learncli$ ls /usr/share
... many, many directories, including dict ...
learncli$ ls /usr/share/dict
american-english words

2.2 Absolute Paths
A path is the textual “address” of a directory or file in the file system. When you want a
program to operate on a specific directory or file you will need to give the program the
path to it.

You just encountered a few paths. First, the root directory’s path is /. The path to the
top-level usr directory, contained within the root directory, was /usr. The path to the
share directory within the /usr directory was /usr/share. Are you catching onto the
pattern?

Paths which begin with a forward slash, referencing the root directory, are called abso-
lute paths. An absolute path is followed by a sequence of directory names separated by

1The learncli container’s sandboxing fromyour PCkeeps separate the container’s files fromyour PC’s. You
are safe to tinker in the container’s files without fear of breaking anything.

2The files stored in each top-level directory evolved over the prior 50 years and aren’t always consistent
with their original intent. Just like a city that with 50 years of booming growth is beholden to past decisions
made without clairvoyance, so it goes for many of the file system’s organizational decisions.

2.3. PRINT YOURWORKINGDIRECTORYWITH THE PWD PROGRAM 13

slashes. The order of directory names is important and conveys their relationship. Each
subsequent directory name is contained by, or a child of, the previous directory name.
For example, /usr/share refers to the share directory contained in the /usr directory,
whereas /share/usr does not exist because there is no share directory in /.

The last name in a path refers to either a directory or a file. This part of a path is impor-
tant because it is the “target” of the path. Technically, it is called the basename. The base-
name is what the path is specifically referring to. Most programming languages have a
standard library function named basename that extracts this string from a path. As you
should come to expect, there’s also a simple CLI program to do the same:

learncli$ basename /usr/share/dict/words
words
learncli$ basename /usr/share/dict
dict
learncli$ basename /usr/bin
bin

As the basename is the final destination, what comes before it is the “path” of directory
names leadingyou to it. The idiomatic term for this slashdelimited sequenceof directory
names is the dirname of a path. Try using the dirname program with a few paths. The
result of dirname is another path to the parent directory of the input path.

learncli$ dirname /usr/share/dict/words
/usr/share/dict
learncli$ dirname /usr/share/dict
/usr/share
learncli$ dirname /usr/bin
/usr

The big idea of an absolute path is it fully identifies and addresses a resource in a file sys-
tem. Starting from the root directory, the names of subsequent directories narrow in on
the exact location the path is referencing. The directories up to and including the parent
directory of a path form its dirname, while the specific name addressed by the path is its
basename.

2.3 Print your working directory with the pwd program
Imagine working on a task involving many files in a single directory. Typing all their
absolute paths quickly becomes painfully redundant. Fortunately, there’s a better way.
When you need towork onmany files in a single directory, you can tell the shell it is your
working directory and thenwrite shorter and less redundant “relative paths” to files from
it.

Your shell maintains a current working directory as part of its state. The pwd program
prints the path of your working directory.

learncli$ pwd
/mnt/learncli/workdir

14 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

The output tells you the current working directory’s path is /mnt/learncli/workdir.
Within our learncli container this path has special properties we’ll return to later.

2.4 Change your working directory with the cd builtin
For now, change your working directory to a path we’re more familiar with using the cd,
the acronym of change directory, builtin command.

learncli$ cd /usr/share/dict
learncli$ pwd
/usr/share/dict

Thefirst commandchangedyour shell’sworkingdirectory to /usr/share/dict. The sec-
ond pwd command was not required to change directories, but its output confirms your
working directory changed. When you need to work with files in a directory, you should
now begin by changing your working directory to it with cd.

2.5 Relative paths from yourworking directory
Previously, you used the ls command followed by an absolute path to list the contents
of a directory. If you take a peek at the manual page of ls, you will see the following:

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by default).

There are two observations of note. First, notice both OPTION(s) and FILE(s) are optional,
denoted by their surrounding square brackets. Second, the description tells you it will
list information about the current directory by default. You can infer that if you run the ls
program without any arguments it is the same as running ls with the current working
directory as the FILE argument. Continuing from the cd /usr/share/dict command
of the previous section, give it a shot!

learncli$ ls
american-english words

The contents of your working directory are listed without providing any path at all. If
you try running ls /usr/share/dict, you’ll see the same output because your working
directory currently is the absolute path /usr/share/dict.

Further,where youused cat to output the contents of /usr/share/dict/words, you can
now simply use the relative path words to refer to the same file.

learncli$ cat words | less

In this example, words is a relative path. Since your current working directory is
/usr/share/dict, the relative path words is the same as /usr/share/dict/words

2.6. THE /MNT/LEARNCLIDIRECTORY IS SHAREDWITH YOUR PC 15

which you previously typed out in full. A relative path specifies only what comes
after the working directory and is not preceded by a slash. Relative paths work with
subdirectories, as well.

learncli$ cd /usr/share
learncli$ ls dict
american-english words
learncli$ cat dict/words | less

In this use of ls, the relative path dict is given. Since you just changed the work-
ing directory to /usr/share, the relative path was equivalent to the absolute path
/usr/share/dict. For the same reason, when you ran the cat program with
the relative path argument dict/words, you were referencing the absolute path
/usr/share/dict/words.

Your current working directory only changes after a cd command completes. This com-
mand is different frommost of the previous command-line programs you’ve used in that
cd isnot aprogram, it is a command“builtin” to theBash shell, just likehistoryandexit
were. The Bash shell is just a program, too, and when you start your shell session in the
learncli container, it begins the shell program which you type into. Part of that pro-
gram’s job is to keep track of your current working directory. This is important to note
because all of the other programs you’ve encountered, including ls, cat, grep, less, and
so on, are just little programs, programs you could implement on your own.

It is especially important to recognize youcanuse either kindofpath, absoluteor relative,
anywhere a path is expected. Working at the command-line, you can freely substitute
absolute paths with relative paths and vice-versa. Now that you are familiar with
using the builtin cd command to change your working directory, you will find relative
paths more convenient. Occasionally, you will find absolute paths preferable, such as
when changing your shell session’s working directory to a far off place in the file system.

2.6 The /mnt/learncli directory is sharedwith your PC
The learncli container’s file system is separate from your host PC’s. Changes youmake
to files in your container’s file system will only persist until you end your session and
revert to their original state the next time you begin a learncli shell session. The won-
derful benefit to this container-based learning environment is if you do something unin-
tended you can exit, begin the learncli container again, and you are back in action.

The /mnt/learncli directory, however, is different. It belongs to your host PC’s file sys-
tem and is “mounted into” the learncli container. All files and directories within it are
accessible and modifiable from both the learncli container and your PC. Your work in
this book will be within the workdir directory, the files outside it are configuration files
for the container.

Let’s take a look at thedirectory in the container first, and then confirm thefiles also exist
on your host PC.

learncli$ cd /mnt/learncli

16 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

learncli$ ls
README docker-compose.yml learncli.ps1 learncli.sh workdir

Now, open a second terminal window on your PC. In it, change your working directory
to the host’s learncli directory that you established in the Installing Required Software
section. (Notewe are using host$ as the prompt string only as a convention and yours is
expected to be different.)

host$ cd learncli
host$ ls

As expected, the same files and directories you saw in the learncli container are also
on your host PC. Now try opening this directory in your host PC’s file explorer or finder.
The program for doing so differs between the Windows and macOS operating systems,
so be sure to run the correct of the following commands (the trailing period or “dot” is
important to both, so don’t leave it off).

• Windows: host$ explorer .
• macOS: host$ open .

You should see a new window open with the current working directory on your host
machine. Notice this is a graphical user interface view of the shared directory. In the up-
coming section you’ll create files in the workdir subdirectory shared between your host
PC, and thus editable in your preferred programming text editor, and the learncli con-
tainer.

2.7 Create directories with the mkdir program
When you work on a project and want to organize its files separate from others, you’ll
need to create a directory. Yes, there’s an “app” for that. The CLI program to make a di-
rectory is mkdir. In the next few commands you will change your working directory to
/mnt/learncli/workdir. Then, youwillmake anewdirectory named ch2 for upcoming
examples in this chapter. Finally, you’ll changeyourworkingdirectory tobe thedirectory
you created. After making the directory, try looking at your host PC’s workdir directory
to see that a change made from inside your container is persisted outside of it via the
shared directory.

learncli$ cd /mnt/learncli/workdir
learncli$ mkdir ch2
learncli$ cd ch2

In the commands you ran above, can you discern which parts of the commands were
paths? Of those paths, whichwere relative andwhichwere absolute?3 After the second cd
command, what is the absolute path of your current working directory? What program
can you run to verify you are correct?

3The /mnt/learncli/workdir path was absolute while ch2was relative. The giveaway is the leading for-
ward slash on the former and the lack thereof on the latter. The relative path ch2, in this example, is equivalent
to the absolute path /mnt/learncli/workdir/ch2.

2.8. COPY FILESWITH THE CP PROGRAM 17

Open the manual page for mkdir. How can you tell the DIRECTORY argument is required
while OPTIONS are not?4 By default, the directory argument expects a path where the
dirnamedirectory already exists and the basename is the name of the folder being created.
If you try creating a directory whose parent directory does not exist, you will receive an
error message in your terminal.

2.8 Copy files with the cp program
Making a copy of a file on your file system is something you’ll commonly do. The cp
program is the universal “copy file(s)” program in command-line interfaces. Go ahead
and give the cp program’smanual page’s synopsis and first line of description a quick read.

Now, let’s try copying the dictionary file of words to your current working directory. As-
suming you’re continuing from the previous section, your currentworking directorywill
be /mnt/learncli/workdir/ch2. Howcan you confirm it is? If it is not, perhaps because
you’re returning to the text after previously exiting your container, how can you change
your container’s working directory to the expected path?

learncli$ cp /usr/share/dict/american-english words
learncli$ ls
words
learncli$ cat words | less

Recall from the cpmanual page that a commonusage of cp takes the required arguments
SOURCE and DEST. Both SOURCE and DEST are paths and in the example above, SOURCE
is the absolute path /usr/share/dict/american-english and DEST is the relative path
words. The result of running the command is a copy of the SOURCE file was made at the
absolute path /mnt/learncli/workdir/ch2/words. Since it’s within the shared direc-
tory, this file is now accessible from your host PC, as well. Mixing and matching abso-
lute paths with relative paths, as shown above, is a common practice. Often you’ll want
to copy some file from outside of your project’s working directory into it or out of it. En-
tire directories and their contents can be copiedwith cp, as well, using the --recursive
option.

2.9 Silent success, noisy errors, and --verbosemode
Command-line programswhose purpose is to take an action saved to the file systemcon-
ventionally display no output when successful. For example, both cp and mkdir offered
you no output after running them despite working as expected. The motivation for this
default behavior is to cut down on unnecessary noise. If you instruct a directory to be
created or a copy to bemade and you see no output, you can safely assume it worked.

You will receive output when these programs do not operate as you should expect them
to, due to an error. For example, try copying the words file to a path whose dirname is
nonexistent.

4Recall that a common pattern in manual pages is to surround optional arguments in square brackets.

18 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

learncli$ cp words /foo/words
cp: cannot create regular file '/foo/words': No such file or directory

When you need to know exactlywhat these “silently successful” programs are doing you
can run them in a “verbose”mode. The --verbose argument is commonacross standard
programs such as cp and mkdir. It tells the program, cp in this case, to print out the steps
it is taking. Try following along in your container:

learncli$ mkdir --verbose a-sub-dir
mkdir: created directory 'a-sub-dir'
learncli$ cp --verbose words a-sub-dir/words
'words' -> 'a-sub-dir/words'

If you run a command that is silently successful yet it does not appear to have the effect
you expected, try running it in a verbose mode for some insight on the actual actions it
took.

2.10 Hidden “dot files” beginwith a .

File names and directories which beginwith a period, or a “dot”, are conventionally con-
sidered hidden files. These files and directories are typically used to store the settings,
preferences, and metadata of tools and projects. Try making a copy, with cp in verbose
mode, of the words file to a file named .words-copy. Remember, do not forget the lead-
ing period in the file name indicating it is a hidden file.

learncli$ cp --verbose words .words-copy
'words' -> '.words-copy'
learncli$ ls
a-sub-dir words

When running the ls program, it would appear no copywasmade, even though the out-
put of cp running in --verbose mode confirmed it was. By default, hidden entries are
not displayed when listing a directory’s content using ls.

2.11 Long vs short options and case sensitivity

To learnhowtoasklsnot to ignorehiddenentries, refer to itsmanualwith the command
man ls. In the description section, look just below the line “Mandatory arguments to
longoptions aremandatory for short options too.” Thefirst twoarguments you see listed
are:

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

2.12. LIST HIDDEN FILESWITH LS --ALLOR LS -A 19

Thedescriptionof thefirstmode sounds exactly like howyouwant ls to run. Notice there
are two variations listed above it. The --all variation is called a long option because it
uses two dashes and a complete word follows. The -a is a short option because it uses a
single dash and a single letter. Long and short options aremostly interchangeable. This
text chooses longoptionsbecause they read less cryptically than short ones. Experienced
users and many online tutorials will choose short options because once you learn them
they are faster to type.

The description of the second mode will make more sense shortly, but focus on its long
and short options. When long options are made of multiple words they tend to be sep-
arated by dashes, such as --almost-all. The short option is -A is distinctly different
from -a because it is capitalized. Program names, arguments, and paths are all case
sensitivewhen youwork at the command-line.

2.12 List hidden files with ls --all or ls -a

Try using the --all long option which tells you it will “not ignore entries starting with
‘.’ .” Then try using the -a short option, too.

learncli$ ls --all
. .. .words-copy a-sub-dir words
learncli$ ls -a
. .. .words-copy a-sub-dir words

A ha! There’s the hidden file .words-copy, but you’ll also notice those strange . and
.. entries, too. We’ll come back to those in the next section. Other than not showing
up in ls, there’s nothing special about hidden files. You work with them just the same
as ordinary files. Try printing the contents of .words-copy and piping it into less for
pagination5.

2.13 Parent directory .. and current directory . links
Two curious entries, . and .., were shownwhen you listed this chapter’s working direc-
tory’s contents using lswith the --all flag. What are these entries? Since each begins
with a ., you knowwhybothwere hidden in previous ls commands. If you run ls --all
in any other directory, you’ll see every other directory has them, too.

These two entries are special and created automatically for you in every directory. They
are both links to directories. We have not discussed a link yet, which is a third kind of
file system entry besides a file or a directory. A link “points” to something else in the file
system6.

5Remember the cat program reads a file and prints it out, so you should have tried cat .words-copy |
less

6If you have worked in a programming language with pointers, such as C, C++, or Rust, a file system link
is much like a pointer. If you have experience in a memory managed language, such as Java, JavaScript, or C#,
you can think of a link as similar to a reference.

20 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

The .. link points to the directory’s parent directory. You will frequently use this link in
conjunctionwith cd to change yourworking directory to the currentworking directory’s
parent. Try the following example:

learncli$ cd a-sub-dir
learncli$ pwd
/mnt/learncli/workdir/ch2/a-sub-dir
learncli$ ls --all
. .. words
learncli$ cd ..
learncli$ pwd
/mnt/learncli/workdir/ch2

Since every directory automatically has both . and .. entries, you can combine parent
directory links into a relative path tomove “up” in the file systemhierarchy bymore than
one directory at a time.

learncli$ pwd
/mnt/learncli/workdir/ch2
learncli$ cd ../..
learncli$ pwd
/mnt/learncli
learncli$ cd workdir/ch2
learncli$ pwd
/mnt/learncli/workdir/ch2

A useful program for “expanding” a relative path to the absolute path it refers to is the
realpath program. It takes no action besides printing out a canonicalized absolute path.
Try it:

learncli$ pwd
/mnt/learncli/workdir/ch2
learncli$ realpath ..
/mnt/learncli/workdir
learncli$ realpath ../..
/mnt/learncli
learncli$ realpath ../../..
/mnt

The single dot . entry in a directory links to itself. It is useful when you want to specify
the current directory as an argument to a program that expects some directory’s path.
For example, the cp programwill copy a file from one directory to another and retain the
samefilename if youprovide a directory as the DEST argument. You’ve already copied the
words file into the currentworking directory using an absolute path, now let’s try amore
idiomatic way applying your knowledge of the single . link.

learncli$ cp /usr/share/dict/american-english .
learncli$ ls
a-sub-dir american-english words

2.14. MOVE OR “RENAME” FILESWITH THE MV PROGRAM 21

Notice the secondargument tocpwas., the link to the currentdirectory. Youcan thinkof
this command as, “copy the file at /usr/share/dict/american-english to the current
working directory.”

You can convince yourself the single dot . is a self-referencing link in every directory
using realpath.

learncli$ pwd
/mnt/learncli/workdir/ch2
learncli$ realpath .
/mnt/learncli/workdir/ch2

Youmay encounter paths beginningwith a ./, such as ./words. These are relative paths.
The relative path ./words is equivalent to the relative path words. Use realpath to con-
vince yourself the leading ./ is redundant in a relative path.

learncli$ realpath ./words
/mnt/learncli/workdir/ch2/words
learncli$ realpath words
/mnt/learncli/workdir/ch2/words

2.14 Move or “rename” files with the mv program

With the mv program you can move, or “rename”, a file or directory to some other path.
Open the manual page for mv and read its synopsis and textual description. Just like cp,
the program to copy files, mv has arguments for a SOURCE and DEST. Unlike cp, after the
mv program successfully completes SOURCE will no longer exist as it has been moved to
the path DEST.

Try moving the hidden file .words-copy to the non-hidden name words-copy.

learncli$ mv .words-copy words-copy
learncli$ ls --all
. .. a-sub-dir american-english words words-copy

You can use mv tomove a file fromone directory to another. Trymoving words-copy into
the directory a-sub-dir.

learncli$ mv words-copy a-sub-dir
learncli$ ls
a-sub-dir american-english words
learncli$ ls a-sub-dir
words words-copy

The example abovemoved the file words-copy into the a-sub-dir directory. If you spec-
ify a path to a directory as the second argument, then mvmoves the original entry to the
directory and retains its filename.

22 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

Check for Understanding: Move the words-copy file back into the currentworking direc-
tory7. (Hint: Consider using the . link.)

The single mv program is used to complete two distinct tasks you’ve done separately in a
graphical file system explorer. First, where you may have “renamed” a file from one file-
name to another. Second, where you cut and pasted or dragged a file from one directory
to some other directory, mv does this, as well. This unification is thanks to operating on
paths.

2.15 List directories recursively with the find program
As a project grows in size, making use of many subdirectories to stay organized, it is te-
dious to use ls to list each directory’s contents in search of some file. The find program
is like ls in that it lists a directory’s contents, but it also lists the contents of subdirecto-
ries recursively. If you open themanual for find, then youwill see an optional argument
named starting-point. The starting point is the directory you want it to traverse. Try
find in the working directory /mnt/learncli/workdir/ch2.

learncli$ find .
.
./american-english
./words
./a-sub-dir
./a-sub-dir/words
./words-copy

Notice the filename ./a-sub-dir/words, a copy of the words file made in the subdirec-
tory a-sub-dir, is listed. Currently, there are not many files in our project, so try find
with a starting point of the root directory. There are a lot of files in the learncli container
to support the operating system and installed programs, so you should pipe the output
to less. You do not need to scroll through them all and you certainly should not worry
over their purposes.

learncli$ find / | less
... every file in the system ...

In the previous chapter you learned a superpower of the command-line is the ability to
connect simple programs together. The find program produces output and the grep
program filters output. As a challenge, can you find all files in your container’s file system
whose filename ends with “words”8?

2.16 Delete files with the rm program
When youno longer have a need for a file andwant to delete it, use the rmprogram, short
for “remove”. Likels, itsmanual provides a synopsiswithanarbitrarynumberof OPTION

7mv a-sub-dir/words-copy .
8find / | grep words$

2.17. DELETE DIRECTORIESWITH RMDIROR RECURSIVE RM 23

arguments and FILE arguments.

SYNOPSIS
rm [OPTION]... [FILE]...

Try removing the file a-sub-dir/words relative to the current working directory of
/mnt/learncli/workdir/ch2.

learncli$ ls a-sub-dir
words
learncli$ rm a-sub-dir/words
learncli$ ls a-sub-dir

As expected, the words file was deleted from a-sub-dir. The ls commands before and
after were only to confirm the effect.

The rm program, by default, will not delete a directory. Confirm this by trying to delete
a-sub-dir. The rm program is capable of deleting directories, but I’ll leave you to reading
its manual to learn how.

2.17 Delete directories with rmdir or recursive rm

2.17.1 Delete empty directories with the rmdir program
The program rmdir is for deleting, or “removing”, empty directories. The word empty is
important. If you attempt to delete a directorywith files still in it, itwill produce an error.
Since the subdirectory a-sub-dir should be empty after the previous section’s example,
try deleting it:

learncli$ ls
a-sub-dir american-english words words-copy
learncli$ rmdir a-sub-dir
learncli$ ls
american-english words words-copy

2.17.2 Delete non-empty directories with rm -i --recursive

When you are confident you want to delete a directory, which may have other files and
directories as a part of it, the rm programhas a --recursivemodewhichwill traverse all
subdirectories to delete all files. Until you aremore comfortable, you should also use the
-i, short for --interactive, mode so that you’re asked to confirm each file deleted and
have a chance to change your mind. Let’s try deleting the ch2 directory entirely. Notice
in the following example I am deliberately choosing to respond with n to the prompts
about removing files and directories.

learncli$ cd /mnt/learncli/workdir
learncli$ rm -i --recursive ch2
rm: descend into directory 'ch2'? y
rm: remove regular file 'ch2/american-english'? n

24 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

rm: remove regular file 'ch2/words'? n
rm: remove regular file 'ch2/words-copy'? n
rm: remove directory 'ch2'? n

Be warned if you do not specify the -i flag you will not be prompted and the files will be
deleted recursively. Try this out on the ch2 directory to get us back to square 0 for ch2.

learncli$ cd /mnt/learncli/workdir
learncli$ rm --recursive ch2
learncli$ ls

I cannot emphasize how careful you should be when running the rm program recur-
sively. Many people before you, myself included, have lost work to rm’s recursive mode.
Nonetheless it is a necessary feature to use at times and is relatively safe if you run it
interactively, the mode which prompts you to confirm removal of each file, using the -i
argument.

2.18 Delete files and directories with caution
Files anddirectories deleted via the command-line are not recoverable in theways you’re
accustom to, so delete carefully. When you delete a file onmacOS it goes into your Trash,
or on Windows your Recycling Bin, for some period of time before it is permanently
deleted. When you delete a file from the command line it is gone.

Of course, you nowhave the knowledge tomake your own “Trash” directorywith mkdir.
Rather than delete files or directories, you can instead move them to “Trash” with mv.
Finally, when you know you no longer need any of the files, then you could permanently
delete themwith rm. This workflow emulates the Trash or Recycling Bin of your host PC.
From a command-line interface you have the power to design your own workflows by
piecing together simple tools.

2.19. COMMAND REFERENCE 25

2.19 Command Reference

Command Description Standalone Usage

basename Print the target of a path basename [PATH]
cp Copy file(s) from SOURCE to DEST cp SOURCE DEST
dirname Print the path to parent directory dirname [PATH]
find Print the directory/file hierarchy find PATH
mkdir Create a directory mkdir [PATH]
mv Move or “rename” a file mv SOURCE DEST
realpath Expand a relative path to absolute realpath PATH
rm Delete a file or link rm PATH
rmdir Delete an empty directory rmdir PATH

26 CHAPTER 2. DIRECTORIES, FILES, AND PATHS

	Why a command-line interface?
	Special Thanks

	Getting Started
	Windows Installation
	Update to Windows 10, Version 2004+
	Installing WSL2
	Installing Docker
	Installing Windows Terminal
	Installing git and Cloning the learncli Repository
	Beginning a Shell Session

	macOS Installation
	Update to Catalina 10.15.6+
	Installing Docker
	Installing git and Cloning the learncli Repository
	Beginning a Shell Session

	Linux Installation
	Cloning the learncli Repository
	Beginning a Shell Session

	The Sorcerer's Shell
	Your First Spells
	Learn about a program with its --help argument
	Paginate output with the less program
	Read program manuals with the man program
	Print file contents with the cat program
	Autocomplete commands with the tab key
	Reuse previous commands with the up/down keys
	Clear your terminal screen with the clear program
	Search and filter text with the grep program
	Review your command log with history
	End a shell session with the builtin exit command
	Command Reference
	Keyboard shortcuts in less

	Directories, Files, and Paths
	Directories
	Absolute Paths
	Print your working directory with the pwd program
	Change your working directory with the cd builtin
	Relative paths from your working directory
	The /mnt/learncli directory is shared with your PC
	Create directories with the mkdir program
	Copy files with the cp program
	Silent success, noisy errors, and --verbose mode
	Hidden ``dot files'' begin with a .
	Long vs short options and case sensitivity
	List hidden files with ls --all or ls -a
	Parent directory .. and current directory . links
	Move or ``rename'' files with the mv program
	List directories recursively with the find program
	Delete files with the rm program
	Delete directories with rmdir or recursive rm
	Delete empty directories with the rmdir program
	Delete non-empty directories with rm -i --recursive

	Delete files and directories with caution
	Command Reference

