
COMP 790: OS Implementation

Access Control Lists

Don Porter

1



COMP 790: OS Implementation

Background (1)
• If everything in Unix is a file…
– Everything in Windows is an object

• Why not files?
– Not all OS abstractions make sense as a file

• Examples:
– Eject button on an optical drive
– Network card



COMP 790: OS Implementation

Windows object model
• Everything, including files, is represented as a generic 

OS object
• New object types can be created/extended with 

arbitrary methods beyond just open/read/write/etc.
• Objects are organized into a tree-like hierarchy
• Try out Windows object explorer (winobj)
– Sysinternals.net



COMP 790: OS Implementation

Background (2)
• A big goal for Windows NT and 2000 was centralizing 

workstation administration at companies/etc.
– Create a user account once, can log onto all systems
– Vs. creating different accounts on 100s of systems

• Active Directory: a Domain server that stores user 
accounts for the domain
– Log on to a workstation using an AD account
– Ex: CS\porter – Domain CS, user id porter
– Used by CS department today, centralizes user 

management



COMP 790: OS Implementation

Active Directory
• Centralized store of users, printers, workstations, etc.
• Each machine caches this info as needed
– Ex., once you log in, the machine caches your credentials



COMP 790: OS Implementation

Big Picture
• OSes need a “language” to express what is allowed 

and what isn’t
• Access Control Lists are a common way to do this
• Structure: “Allowed|Denied: Subject Verb Object”



COMP 790: OS Implementation

Unix permissions as ACLs
-rw-------@ 1 porter staff  151841 Nov 10 08:45 win2kacl.pdf

• Allowed|Denied: Subject Verb Object
• Allowed: porter read win2kacl.pdf
• Allowed: porter write win2kacl.pdf
• Denied: staff read win2kacl.pdf
• Denied: other * win2kacl.pdf



COMP 790: OS Implementation

Fine-grained ACLs
• Why have subjects other than users/groups?
– Not all of my programs are equally trusted
– Web browser vs. tax returns
– Want to run some applications in a restricted context

• Still want a unified desktop and file system
– Don’t want to log out and log in for different applications

• Real goal: Associate a restricted context with a 
program



COMP 790: OS Implementation

Why different verbs/objects
• Aren’t read, write, and execute good enough?
• Example: Changing passwords
– Yes, you read and write the password file
– But not directly (since I shouldn’t be able to change other 

passwords)
– Really, the administrator gives a trusted utility/service 

permission to write entries
– And gives you permission to call a specific service function 

(change password) with certain arguments (namely your 
own user id/pass)



COMP 790: OS Implementation

Fine-grained access control lists
• Keep user accounts and associated permissions
– But let users create restricted subsets of their permissions

• In addition to files, associate ACLs with any object
– ACLs can be very long, with different rules for each 

user/context

• And not just RWX rules 
– But any object method can have different rules



COMP 790: OS Implementation

Big picture
• ACLs are written in terms of enterprise-wide 

principals
– Users in AD
– Objects that may be system local or on a shared file system
– Object types and verbs usually in AD as well

• ACLs are associated with a specific object, such as a 
file



COMP 790: OS Implementation

Complete!
• Assertion: Any security policy you can imagine can be 

expressed using ACLs
– Probably correct

• Challenges:
– Correct enforcement of ACLs
– Efficient enforcement of ACLs
– Updating ACLs
– Correctly writing the policies/ACLs in the first place



COMP 790: OS Implementation

Correct enforcement
• Strategy: All policies are evaluated by a single 

function
• Implement the evaluation function once
– Audit, test, audit, test until you are sure it looks ok

• Keep the job tractable by restricting the input types
• All policies, verbs, etc. have to be expressed in a way 

that a single function can understand
– Shifts some work to application developer



COMP 790: OS Implementation

Efficient enforcement
• Evaluating a single object’s ACL is no big deal
• When context matters, the amount of work grows 

substantially
• Example: The Linux VFS checks permission starting at 

the current directory (or common parent), and 
traverses each file in the tree
– Why?
– To check the permissions that you should be allowed to 

find this file



COMP 790: OS Implementation

Efficiency
• In addition to the file system, other container objects 

create a hierarchy in Windows
• Trade-off: Either check permissions from top-down 

on the entire hierarchy, or propagate updates
– Linux: top-down traversal
– Alternative: chmod o-w /home/porter

• Walk each file under /home/porter and also drop other’s write 
permission



COMP 790: OS Implementation

Efficiency, cont
• AD decided the propagating updates was more 

efficient
• Intuition: Access checks are much more frequent 

than changes
– Better to make the common case fast!



COMP 790: OS Implementation

Harder than it looks
# ls /home/porter
drwxr-xr--x   porter porter 4096 porter
chmod o+r /home/porter/public
# chmod o-r porter
# ls /home/porter
drwxr-x---x   porter porter 4096 porterRecursively change all children 

to o-r.
But do you change public?



COMP 790: OS Implementation

Issues with propagating
• Need to distinguish between explicit and inherited 

changes to the child’s permissions when propagating
– Ex 1: If I take away read permission to my home directory, 

distinguish those files with an explicit read permission 
from those just inheriting from the parent

– Ex 2: If I want to prevent the administrator from reading a 
file, make sure the administrator can’t countermand this 
by changing the ACL on /home



COMP 790: OS Implementation

AD’s propagation solution
• When an ACL is explicitly changed, mark it as such
– Vs. inherited permissions

• When propagating, delete and reapply inherited 
permissions
– Leave explicit ACLs alone



COMP 790: OS Implementation

Challenge: Policies to ACLs
• Assertion: Translating policies to ACLs is hard
• Hard to:
– Express some policies as ACLs
– Write the precise ACL you want
– Identify all objects that you want to restrict

• Much research around developing policy languages 
that better balance: human usability and 
implementation correctness
– This system strongly favors implementation correctness



COMP 790: OS Implementation

Example Policy
• “Don’t let this file leave the computer”
• Ideas?
– Create a restricted process context that disables network 

access
– Only give read permission to this context

• But, what if this process writes the contents to a new 
file?  Or over IPC to an unrestricted process?
– Does the ACL propagate with all output?
– If so, what if the program has a legitimate need to access 

other data?



COMP 790: OS Implementation

Summary
• Basic idea of ACL
• How it is used in Windows/AD
– How extended for fine granularity

• Challenges with hierarchical enforcement, writing 
policies


