
COMP 790: OS Implementation

Ext 3/4 file systems

Don Porter

1

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

2

Today’s Lecture

COMP 790: OS Implementation

Ext2 review
• Very reliable, “best-of-breed” traditional file system

design
• Much like the JOS file system you are building now
– Fixed location super blocks
– A few direct blocks in the inode, followed by indirect

blocks for large files
– Directories are a special file type with a list of file names

and inode numbers
– Etc.

COMP 790: OS Implementation

File systems and crashes
• What can go wrong?
– Write a block pointer in an inode before marking block as

allocated in allocation bitmap
– Write a second block allocation before clearing the first –

block in 2 files after reboot
– Allocate an inode without putting it in a directory –

“orphaned” after reboot
– Etc.

COMP 790: OS Implementation

Deeper issue
• Operations like creation and deletion span multiple

on-disk data structures
– Requires more than one disk write

• Think of disk writes as a series of updates
– System crash can happen between any two updates
– Crash between wrong two updates leaves on-disk data

structures inconsistent!

COMP 790: OS Implementation

Atomicity
• The property that something either happens or it

doesn’t
– No partial results

• This is what you want for disk updates
– Either the inode bitmap, inode, and directory are updated

when a file is created, or none of them are

• But disks only give you atomic writes for a sector L
• Fundamentally hard problem to prevent disk

corruptions if the system crashes

COMP 790: OS Implementation

fsck
• Idea: When a file system is mounted, mark the on-

disk super block as mounted
– If the system is cleanly shut down, last disk write clears this

bit

• Reboot: If the file system isn’t cleanly unmounted,
run fsck

• Basically, does a linear scan of all bookkeeping and
checks for (and fixes) inconsistencies

COMP 790: OS Implementation

fsck examples
• Walk directory tree: make sure each reachable inode

is marked as allocated
• For each inode, check the reference count, make

sure all referenced blocks are marked as allocated
• Double-check that all allocated blocks and inodes are

reachable
• Summary: very expensive, slow scan of the entire file

system

COMP 790: OS Implementation

Journaling
• Idea: Keep a log of what you were doing
– If the system crashes, just look at data structures that

might have been involved

• Limits the scope of recovery; faster fsck!

COMP 790: OS Implementation

Undo vs. redo logging
• Two main choices for a journaling scheme (same in

databases, etc)
• Undo logging:

1) Write what you are about to do (and how to undo it)
• Synchronously

2) Then make changes on disk
3) Then mark the operations as complete

• If system crashes before commit record, execute
undo steps
– Undo steps MUST be on disk before any other changes!

Why?

COMP 790: OS Implementation

Redo logging
• Before an operation (like create)

1) Write everything that is going to be done to the log + a
commit record

• Sync

2) Do the updates on disk
3) When updates are complete, mark the log entry as
obsolete

• If the system crashes during (2), re-execute all steps
in the log during fsck

COMP 790: OS Implementation

Which one?
• Ext3 uses redo logging
– Tweedie says for delete

• Intuition: It is easier to defer taking something apart
than to put it back together later
– Hard case: I delete something and reuse a block for

something else before journal entry commits

• Performance: This only makes sense if data
comfortably fits into memory
– Databases use undo logging to avoid loading and writing

large data sets twice

COMP 790: OS Implementation

Atomicity revisited
• The disk can only atomically write one sector
• Disk and I/O scheduler can reorder requests
• Need atomic journal “commit”

COMP 790: OS Implementation

Atomicity strategy
• Write a journal log entry to disk, with a transaction

number (sequence counter)
• Once that is on disk, write to a global counter that

indicates log entry was completely written
– This single write is the point at which a journal entry is

atomically “committed” or not
• Sometimes called a linearization point

• Atomic: either the sequence number is written or
not; sequence number will not be written until log
entry on disk

COMP 790: OS Implementation

Batching
• This strategy requires a lot of synchronous writes
– Synchronous writes are expensive

• Idea: let’s batch multiple little transactions into one
bigger one
– Assuming no fsync()
– For up to 5 seconds, or until we fill up a disk block in the

journal
– Then we only have to wait for one synchronous disk write!

COMP 790: OS Implementation

Complications
• We can’t write data to disk until the journal entry is

committed to disk
– Ok, since we buffer data in memory anyway
– But we want to bound how long we have to keep dirty data

(5s by default)
– JBD adds some flags to buffer heads that transparently

handles a lot of the complicated bookkeeping
• Pins writes in memory until journal is written
• Allows them to go to disk afterward

COMP 790: OS Implementation

More complications
• We also can’t write to the in-memory version until

we’ve written a version to disk that is consistent with
the journal

• Example:
– I modify an inode and write to the journal
– Journal commits, ready to write inode back
– I want to make another inode change

• Cannot safely change in-memory inode until I have either written
it to the file system or created another journal entry

COMP 790: OS Implementation

Another example
• Suppose journal transaction1 modifies a block, then

transaction 2 modifies the same block.
• How to ensure consistency?
– Option 1: stall transaction 2 until transaction 1 writes to fs
– Option 2 (ext3): COW in the page cache + ordering of

writes

COMP 790: OS Implementation

Yet more complications
• Interaction with page reclaiming:
– Page cache can pick a dirty page and tell fs to write it back
– Fs can’t write it until a transaction commits
– PFRA chose this page assuming only one write-back; must

potentially wait for several

• Advanced file systems need the ability to free
another page, rather than wait until all prerequisites
are met

COMP 790: OS Implementation

Write ordering
• Issue, if I make file 1 then file 2, can I have a situation

where file 2 is on disk but not file 1?
– Yes, theoretically

• API doesn’t guarantee this won’t happen (journal
transactions are independent)
– Implementation happens to give this property by grouping

transactions into a large, compound transactions
(buffering)

COMP 790: OS Implementation

Checkpointing
• We should “garbage collect” our log once in a while
– Specifically, once operations are safely on disk, journal

transaction is obviated
– A very long journal wastes time in fsck

– Journal hooks associated buffer heads to track when they get
written to disk

– Advances logical start of the journal, allows reuse of those
blocks

COMP 790: OS Implementation

Journaling modes
• Full data + metadata in the journal
– All data written twice, batching less effective, safer

• Ordered writes
– Only metadata in the journal
– Data writes must complete before metadata goes into

journal
– Faster than full data, but constrains write orderings

(slower)

• Metadata only – fastest, most dangerous
– Can write metadata before data is updated

COMP 790: OS Implementation

Revoke records
• When replaying the journal, don’t redo these

operations
– Mostly important for metadata-only modes

• Example: Once a file is deleted and the inode is
reused, revoke the creation record in the log
– Recreating and re-deleting could lose some data written to

the file

COMP 790: OS Implementation

ext3 summary
• A modest change: just tack on a journal
• Make crash recovery faster, less likely to lose data
• Surprising number of subtle issues
– You should be able to describe them
– And key design choices (like redo logging)

COMP 790: OS Implementation

ext4
• ext3 has some limitations that prevent it from

handling very large, modern data sets
– Can’t fix without breaking backwards compatibility
– So fork the code

• General theme: several changes to better handle
larger data
– Plus a few other goodies

COMP 790: OS Implementation

Example
• Ext3 fs limited to 16 TB max size
– 32-bit block numbers (2^32 * 4k block size), or “address”

of blocks on disk
– Can’t make bigger block numbers on disk without changing

on-disk format
– Can’t fix without breaking backwards compatibility

• Ext4 – 48 bit block numbers

COMP 790: OS Implementation

Indirect blocks vs. extents
• Instead of represent each block, represent large

contiguous chunks of blocks with an extent
• More efficient for large files (both in space and disk

scheduling)
• Ex: Disk sectors 50—300 represent blocks 0—250 of

file
– Vs.: Allocate and initialize 250 slots in an indirect block
– Deletion requires marking 250 slots as free

COMP 790: OS Implementation

Extents, cont.
• Worse for highly fragmented or sparse files
– If no 2 blocks are contiguous, will have an extent for each

block
• Basically a more expensive indirect block scheme

– Propose a block-mapped extent, which essentially reverts
to a more streamlined indirect block

COMP 790: OS Implementation

Static inode allocations
• When you create an ext3 or ext4 file system, you

create all possible inodes
• Disk blocks can either be used for data or inodes, but

can’t change after creation
• If you need to create a lot of files, better make lots of

inodes
• Why?

COMP 790: OS Implementation

Why?
• Simplicity
– Fixed location inodes means you can take inode number,

total number of inodes, and find the right block using math
• Dynamic inodes introduces another data structure to track this

mapping, which can get corrupted on disk (losing all contained
files!)

– Bookkeeping gets a lot more complicated when blocks
change type

• Downside: potentially wasted space if you guess
wrong number of files

COMP 790: OS Implementation

Directory scalability
• An ext3 directory can have a max of 32,000 sub-

directories/files
– Painfully slow to search – remember, this is just a simple

array on disk (linear scan to lookup a file)

• Replace this in ext4 with an HTree
– Hash-based custom BTree
– Relatively flat tree to reduce risk of corruptions
– Big performance wins on large directories – up to 100x

COMP 790: OS Implementation

Other goodies
• Improvements to help with locality
– Preallocation and hints keep blocks that are often accessed

together close on the disk

• Checksumming of disk blocks is a good idea
– Especially for journal blocks

• Fsck on a large fs gets expensive
– Put used inodes at front if possible, skip large swaths of

unused inodes if possible

COMP 790: OS Implementation

Summary
• ext2 – Great implementation of a “classic” file system
• ext3 – Add a journal for faster crash recovery and

less risk of data loss
• ext4 – Scale to bigger data sets, plus other features
– Total FS size (48-bit block numbers)
– File size/overheads (extents)
– Directory size (HTree vs. a list)

