
COMP 790: OS Implementation

Read-Copy Update
(RCU)

Don Porter

COMP 790: OS Implementation

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads

Today’s Lecture

COMP 790: OS Implementation

RCU in a nutshell
• Think about data structures that are mostly read,

occasionally written
– Like the Linux dcache

• RW locks allow concurrent reads
– Still require an atomic decrement of a lock counter
– Atomic ops are expensive

• Idea: Only require locks for writers; carefully update
data structure so readers see consistent views of
data

COMP 790: OS Implementation

Motivation
(from Paul McKenney’s Thesis)

0

5

10

15

20

25

30

35

1 2 3 4

H
as

h
Ta

bl
e

S
ea

rc
he

s
pe

r M
ic

ro
se

co
nd

CPUs

"ideal"
"global"

"globalrw"

Performance of RW
lock only marginally
better than mutex

lock

COMP 790: OS Implementation

Principle (1/2)
• Locks have an acquire and release cost
– Substantial, since atomic ops are expensive

• For short critical regions, this cost dominates
performance

COMP 790: OS Implementation

Principle (2/2)
• Reader/writer locks may allow critical regions to

execute in parallel
• But they still serialize the increment and decrement

of the read count with atomic instructions
– Atomic instructions performance decreases as more CPUs

try to do them at the same time

• The read lock itself becomes a scalability
bottleneck, even if the data it protects is read 99%
of the time

COMP 790: OS Implementation

Lock-free data structures
• Some concurrent data structures have been

proposed that don’t require locks
• They are difficult to create if one doesn’t already suit

your needs; highly error prone
• Can eliminate these problems

COMP 790: OS Implementation

RCU: Split the difference
• One of the hardest parts of lock-free algorithms is

concurrent changes to pointers
– So just use locks and make writers go one-at-a-time

• But, make writers be a bit careful so readers see a
consistent view of the data structures

• If 99% of accesses are readers, avoid performance-
killing read lock in the common case

COMP 790: OS Implementation

Example: Linked lists

A C E

B

Reader goes to B

B’s next
pointer is

uninitialized;
Reader gets a

page fault

Insert(B)
This implementation

needs a lock

COMP 790: OS Implementation

Example: Linked lists

A C E

B

Reader goes to C or B-
--either is ok

Insert(B)

COMP 790: OS Implementation

Example recap
• Notice that we first created node B, and set up all

outgoing pointers
• Then we overwrite the pointer from A
– No atomic instruction or reader lock needed
– Either traversal is safe
– In some cases, we may need a memory barrier

• Key idea: Carefully update the data structure so that
a reader can never follow a bad pointer
– Writers still serialize using a lock

COMP 790: OS Implementation

Example 2: Linked lists

A C E

Reader may still be
looking at C. When

can we delete?

Delete (C)

COMP 790: OS Implementation

Problem
• We logically remove a node by making it unreachable

to future readers
– No pointers to this node in the list

• We eventually need to free the node’s memory
– Leaks in a kernel are bad!

• When is this safe?
– Note that we have to wait for readers to “move on” down

the list

COMP 790: OS Implementation

Worst-case scenario
• Reader follows pointer to node X (about to be freed)
• Another thread frees X
• X is reallocated and overwritten with other data
• Reader interprets bytes in X->next as pointer,

segmentation fault

COMP 790: OS Implementation

Quiescence
• Trick: Linux doesn’t allow a process to sleep while

traversing an RCU-protected data structure
– Includes kernel preemption, I/O waiting, etc.

• Idea: If every CPU has called schedule() (quiesced),
then it is safe to free the node
– Each CPU counts the number of times it has called

schedule()
– Put a to-be-freed item on a list of pending frees
– Record timestamp on each CPU
– Once each CPU has called schedule, do the free

COMP 790: OS Implementation

Quiescence, cont
• There are some optimizations that keep the per-CPU

counter to just a bit
– Intuition: All you really need to know is if each CPU has

called schedule() once since this list became non-empty
– Details left to the reader

COMP 790: OS Implementation

Limitations
• No doubly-linked lists
• Can’t immediately reuse embedded list nodes
– Must wait for quiescence first
– So only useful for lists where an item’s position doesn’t

change frequently

• Only a few RCU data structures in existence

COMP 790: OS Implementation

Nonetheless
• Linked lists are the workhorse of the Linux kernel
• RCU lists are increasingly used where appropriate
• Improved performance!

COMP 790: OS Implementation

Big Picture

• Carefully designed data
structures
– Readers always see

consistent view

• Low-level “helper”
functions encapsulate
complex issues
– Memory barriers
– Quiescence

RCU “library”

Hash
List

Pending
Signals

COMP 790: OS Implementation

API
• Drop in replacement for read_lock:
– rcu_read_lock()

• Wrappers such as rcu_assign_pointer() and
rcu_dereference_pointer() include memory barriers

• Rather than immediately free an object, use
call_rcu(object, delete_fn) to do a deferred deletion

COMP 790: OS Implementation

Code Example
From fs/binfmt_elf.c

rcu_read_lock();
prstatus->pr_ppid =

task_pid_vnr(rcu_dereference(p->real_parent));
rcu_read_unlock();

COMP 790: OS Implementation

Simplified Code Example
From arch/x86/include/asm/rcupdate.h

#define rcu_dereference(p) ({ \
typeof(p) ______p1 = (*(volatile typeof(p)*) &p);\
read_barrier_depends(); // defined by arch \
______p1; // “returns” this value \

})

COMP 790: OS Implementation

Code Example
From fs/dcache.c

static void d_free(struct dentry *dentry) {
/* ... Ommitted code for simplicity */
call_rcu(&dentry->d_rcu, d_callback);

}
// After quiescence, call_rcu functions are called
static void d_callback(struct rcu_head *rcu) {

struct dentry *dentry =
container_of(head, struct dentry, d_rcu);

__d_free(dentry); // Real free
}

COMP 790: OS Implementation

From McKenney and Walpole, Introducing Technology
into the Linux Kernel: A Case Study

{1,2,3 5,6,7 11,4,8}, while others will see {1,2,3 11,4,8}.
The synchronize_rcu() primitive blocks until all pre-

existing RCU readers complete, after which point there can
be no readers referencing the second element, as indicated
by the green shading on the third row. At this point, all
RCU readers see a single version of the list, namely, {1,2,3
11,4,8}. It is then safe to free that element, as shown on the
last row.

This of course leads to the question of how one could
possibly implement synchronize_rcu(), especially in cases
where the read-side primitives generate no code. This ques-
tion is taken up in the next section.

2.4 Toy RCU Implementation
Consider a non-preemptive kernel environment, where all

threads run to block. In this case, it is illegal to block while
holding a spinlock, as doing so can result in a deadlock sit-
uation where all the CPUs are spinning on a lock held by
a blocked thread. The CPUs cannot acquire the lock until
it is released, but the blocked thread cannot release until
after at least one of the CPUs acquires the lock. This same
restriction applies to RCU read-side critical sections, so that
it is illegal to block while traversing an RCU-protected data
structure.

This restriction is sufficient to admit the following trivial
implementation of synchronize_rcu():

1 void synchronize_rcu()
2 {
3 foreach_cpu(cpu)
4 run_on(cpu);
5 }

This code fragment simply runs on each CPU in turn. To
see how this works, consider the situation once synchronize_
rcu() has started running on CPU 0. Whatever was run-
ning on CPU 0 beforehand must have blocked, otherwise
synchronize_rcu() could not have begun running on CPU 0.
Because it is illegal to block within an RCU read-side critical
section, all prior RCU read-side critical sections running on
CPU 0 must have completed. This same line of reasoning
applies to each of the other CPUs that synchronize_rcu()
runs on, so that once synchronize_rcu() has completed, all
prior RCU read-side critcial sections throughout the system
must have completed.

Production-quality synchronize_rcu() implementations
are more complex due to the need for performance and scal-
ability, the need to preempt RCU read-side critical sections
in real-time systems, and the need to tolerate CPUs being
added to and removed from the system, for example, in or-
der to conserve energy when the system is mostly idle.

2.5 Additional Information on RCU
Readers wishing more information on RCU are referred to

a number of RCU-related publications covering fundamen-
tal concepts [45], usage [35], the Linux-kernel RCU API [34],
implementation of the RCU infrastructure [1, 24, 28, 31, 32,
33], real-time adaptations of RCU [12, 16, 43, 41, 29, 60],
and the performance of RCU [13, 25, 51, 53]. There are also
a number of publications on other mechanisms that in some
ways resemble RCU [10, 15, 18, 19, 20, 21, 22, 55, 56, 59,
61]. In addition, the Linux 2.4 kernel’s use of the brlock
per-CPU reader-writer locking primitive in the networking
stack also has some resemblance to RCU. (The brlock prim-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2002 2003 2004 2005 2006 2007 2008 2009

R

C
U

 A
PI

 U
se

s

Year

Figure 2: RCU API Usage in the Linux Kernel

itive resembles Hsieh’s and Weihl’s scalable reader-writer
locks [17].)

3. RCU USAGEWITHIN LINUX
RCU’s usage within the Linux kernel has increased rapidly

over the past five years, as shown in Figure 2 [27]. In some
cases, RCU has displaced other synchronization mechanisms
in existing code (for example, brlock in the networking pro-
tocol stacks [50, 65, 66]), while in other cases it has been in-
troduced with code implementing new functionality (for ex-
ample, the audit system within SELinux [51]). Despite its
rapid growth, RCU remains a niche technology, as shown
by the comparison with locking in Figure 3. Nonetheless,
RCU can be characterized as a reasonably successful niche
technology within the Linux kernel. As such, it is useful to
review the path RCU took in achieving this modest level of
success, which was due more to RCU’s being dramatically
changed by Linux than by Linux being changed by RCU.

4. RCU BEFORE LINUX
Before Linux, production use of RCU-like mechanisms ap-

pears to have been confined to large data-processing systems
such as the IBM mainframe’s VM/XA [15] and Sequent’s
(now IBM’s) Symmetry and NUMA-Q systems running the
DYNIX/ptx operating system [44]. These were large (for the
time) enterprise systems running parallel data-processing
workloads. These systems normally ran in a protected net-
working environment, behind firewalls or client machines
with restricted usage modes. The real-time response re-
quired of these machines is perhaps best exemplified by the
TPC/A benchmark [67], which has the very soft real-time
requirement that 90% of transactions complete in two sec-
onds or less.

Back when the author was still foolish enough to believe
that he knew all that there was to know about RCU, the
RCU API for DYNIX/ptx [40] consisted of only the follow-
ing members (translated to their Linux equivalents, where

COMP 790: OS Implementation

Summary
• Understand intuition of RCU
• Understand how to add/delete a list node in RCU
• Pros/cons of RCU

