[l COMP 790: OS Implementation

2/21/20

Scheduling

Don Porter

COMP 790: OS Implementation

Logical Diagram

Today’s Lecture
Switching to CPU
scheduling

Memory

Device
Management Drivers

CPU
Scheduler

[Interrupts} [Dis J [Net J [Consistency JHardware

2

(LIl COMP 790: OS Implementation

Lecture goals
* Understand low-level building blocks of a scheduler
* Understand competing policy goals
* Understand the O(1) scheduler
— CFS next lecture
* Familiarity with standard Unix scheduling APIs

COMP 790: OS Implementation

Undergrad review
* What is cooperative multitasking?
— Processes voluntarily yield CPU when they are done
* What is preemptive multitasking?

— OS only lets tasks run for a limited time, then forcibly
context switches the CPU

* Pros/cons?

— Cooperative gives more control; so much that one task can
hog the CPU forever

— Preemptive gives OS more control, more
overheads/complexity

(LIl COMP 790: OS Implementation

Where can we preempt a process?

* In other words, what are the logical points at which

the OS can regain control of the CPU?
* System calls

— Before

— During (more next time on this)

— After
* Interrupts

— Timer interrupt — ensures maximum time slice

COMP 790: OS Implementation

(Linux) Terminology
* mm_struct — represents an address space in kernel
* task —represents a thread in the kernel

— Atask points to 0 or 1 mm_structs
« Kernel threads just “borrow” previous task’s mm, as they only
execute in kernel address space

— Many tasks can point to the same mm_struct
* Multi-threading

¢ Quantum — CPU timeslice

Al COMP 790: OS Implementation

Outline
* Policy goals
* Low-level mechanisms
* 0O(1) Scheduler
* CPU topologies
* Scheduling interfaces

COMP 790: OS Implementation

No perfect solution

* Optimizing multiple variables
¢ Like memory allocation, this is best-effort

— Some workloads prefer some scheduling strategies

* Nonetheless, some solutions are generally better

than others

COMP 790: OS Implementation

Other context switching tasks

* Swap out other register state

— Segments, debugging registers, MM, etc.

* If descheduling a process for the last time, reclaim its

memory

* Switch thread stacks

2/21/20

COMP 790: OS Implementation

Policy goals
Fairness — everything gets a fair share of the CPU
Real-time deadlines
— CPU time before a deadline more valuable than time after
Latency vs. Throughput: Timeslice length matters!
— GUI programs should feel responsive
— CPU-bound jobs want long timeslices, better throughput
User priorities

— Virus scanning is nice, but | don’t want it slowing things
down

11

8
COMP 790: OS Implementation
Context switching
e What s it?
— Swap out the address space and running thread
* Address space:
— Need to change page tables
— Update cr3 register on x86
— Simplified by convention that kernel is at same address
range in all processes
— What would be hard about mapping kernel in different
places?
10
10
COMP 790: OS Implementation
Switching threads
* Programming abstraction:
/* Do some work */
schedule(); /* Something else runs */
/* Do more work */
12
12

[l COMP 790: OS Implementation

How to switch stacks?

* Store register state on the stack in a well-defined
format

* Carefully update stack registers to new stack
— Tricky: can’t use stack-based storage for this step!

13

(LIl COMP 790: OS Implementation

Weird code to write
* Inside schedule(), you end up with code like:
switch to(me, next, &last);
/* possibly clean up last */

* Where does last come from?
— Output of switch_to
— Written on my stack by previous thread (not me)!

15

(LIl COMP 790: OS Implementation

Outline
* Policy goals
* Low-level mechanisms
* O(1) Scheduler
* CPU topologies
* Scheduling interfaces

2/21/20

COMP 790: OS Implementation

Example
Thread 1 Thread 2
E!» (prev) (next)
esp
regs regs
ebp ebp P

/* eax is next->thread info.esp */
/* push general-purpose regs*/
push ebp

mov esp, eax

pop ebp

/* pop other regs */

14

COMP 790: OS Implementation

How to code this?
* Pick a register (say ebx); before context switch, this is
a pointer to last’s location on the stack
* Pick a second register (say eax) to stores the pointer
to the currently running task (me)
* Make sure to push ebx after eax
* After switching stacks:
— pop ebx /* eax still points to old task*/
— mov (ebx), eax /* store eax at the location ebx points to */
— pop eax /* Update eax to new task */

16

COMP 790: OS Implementation

Strawman scheduler

* Organize all processes as a simple list
* In schedule():

— Pick first one on list to run next

— Put suspended task at the end of the list
* Problem?

— Only allows round-robin scheduling

— Can’t prioritize tasks

17

18

[l COMP 790: OS Implementation

Even straw-ier man
* Naive approach to priorities:
— Scan the entire list on each run
— Or periodically reshuffle the list
* Problems:
— Forking — where does child go?

— What about if you only use part of your quantum?
* E.g., blocking I/O

19

[l COMP 790: OS Implementation

O(1) Bookkeeping
* runqueue: a list of runnable processes
— Blocked processes are not on any runqueue
— Arunqueue belongs to a specific CPU
— Each runnable task is on exactly one runqueue

* Task only scheduled on runqueue’s CPU unless migrated
e 2 *40 * #CPUs runqueues
— 40 dynamic priority levels (more later)
— 2 sets of runqueues — one active and one expired

21

[l COMP 790: OS Implementation
O(1) Intuition

* Take the first task off the lowest-numbered runqueue
on active set

— Confusingly: a lower priority value means higher priority
* When done, put it on appropriate runqueue on
expired set
* Once active is completely empty, swap which set of
runqueues is active and expired

* Constant time, since fixed number of queues to
check; only take first item from non-empty queue

23

2/21/20

COMP 790: OS Implementation

O(1) scheduler

* Goal: decide who to run next, independent of
number of processes in system

— Still maintain ability to prioritize tasks, handle partially
unused quanta, etc

20
COMP 790: OS Implementation
O(1) Data Structures
Active Expired
139 4 _>Q—>Q 139
138 138
137 7>/ 137
R e SO I
100 100
22
22
COMP 790: OS Implementation
O(1) Example
Active Expired
139 4 _>Q—>Q 139
138
138 ove to expires
137 1 '9 Pick first, 137 queue when
" highest . quantum
. priority task B expires
. to run .
R e S R
100 100
24
24

[l COMP 790: OS Implementation
What now?
Active Expired
B R e
138 138
137 137 > 7
1ot I
100 100
25
25
[l COMP 790: OS Implementation
Blocking Example ﬁ
Active Expired
139 139
—> Block on '
133 disk! 138
137 1 137 Process
. . goes on
. . disk wait
: . queue
T [
100 100
27
27

[l COMP 790: OS Implementa

tion

Time slice tracking

* If a process blocks and then becomes runnable, how
do we know how much time it had left?

* Each task tracks ticks left in ‘time_slice’ field
— On each clock tick: current->time slice--
— If time slice goes to zero, move to expired queue

* Refill time slice

* Schedule someone else
— An unblocked task can use balance of time slice
— Forking halves time slice with child

29

2/21/20

COMP 790: OS Implementation

Blocked Tasks

* What if a program blocks on 1/0, say for the disk?
— It still has part of its quantum left

— Not runnable, so don’t waste time putting it on the active
or expired runqueues

* We need a “wait queue” associated with each
blockable event

— Disk, lock, pipe, network socket, etc.

26

COMP 790: OS Implementation

Blocked Tasks, cont.
* A blocked task is moved to a wait queue until the
expected event happens
— No longer on any active or expired queue!
* Disk example:

— After I/O completes, interrupt handler moves task back to
active rungqueue

28

COMP 790: OS Implementation

More on priorities
100 = highest priority
139 = lowest priority
120 = base priority
— “nice” value: user-specified adjustment to base priority

— Selfish (not nice) =-20 (I want to go first)
— Really nice = +19 (I will go last)

30

COMP 790: OS Implementation

Base time slice

(140 - prio)*20ms prio <120
time =
(140 - prio)*5ms prio =120

* “Higher” priority tasks get longer time slices

— And run first

31

COMP 790: OS Implementation

Idea: Infer from sleep time

* By definition, I/O bound applications spend most of

their time waiting on /O

¢ We can monitor I/0 wait time and infer which

programs are GUI (and disk intensive)

* Give these applications a priority boost
* Note that this behavior can be dynamic

— Ex: GUI configures DVD ripping, then it is CPU-bound
— Scheduling should match program phases

33

COMP 790: OS Implementation

Dynamic Priority in O(1) Scheduler

* Important: The runqueue a process goes in is

determined by the dynamic priority, not the static

priority

— Dynamic priority is mostly determined by time spent
waiting, to boost Ul responsiveness

Nice values influence static priority (directly)

— Static priority is a starting point for dynamic priority

— No matter how “nice” you are (or aren’t), you can’t boost
your “bonus” without blocking on a wait queue!

2/21/20

COMP 790: OS Implementation

Goal: Responsive Uls
* Most GUI programs are 1/0 bound on the user
— Unlikely to use entire time slice

* Users get annoyed when they type a key and it takes
a long time to appear

* |dea: give Ul programs a priority boost
— Go to front of line, run briefly, block on I/O again

* Which ones are the Ul programs?

32

COMP 790: OS Implementation

Dynamic priority
dynamic priority = max (100, min (static priority -
bonus +5,139))
* Bonus is calculated based on sleep time
* Dynamic priority determines a tasks’ runqueue

* This is a heuristic to balance competing goals of CPU
throughput and latency in dealing with infrequent
1/0

— May not be optimal

34

COMP 790: OS Implementation

Rebalancing tasks

* As described, once a task ends up in one CPU’s
runqueue, it stays on that CPU forever

35

36

COMP 790: OS Implementation

Rebalancing

CPUO CPU1

CPU 1 Needs
More Work!

37

COMP 790: OS Implementation

Idea: Idle CPUs rebalance

* If a CPU is out of runnable tasks, it should take load
from busy CPUs
— Busy CPUs shouldn’t lose time finding idle CPUs to take
their work if possible
* There may not be any idle CPUs
— Overhead to figure out whether other idle CPUs exist
— Just have busy CPUs rebalance much less frequently

39

COMP 790: OS Implementation

Rebalancing strategy
* Read the loadavg of each CPU
* Find the one with the highest loadavg

* (Hand waving) Figure out how many tasks we could
take
— If worth it, lock the CPU’s runqueues and take them
— If not, try again later

41

2/21/20

COMP 790: OS Implementation

Rebalancing tasks
* As described, once a task ends up in one CPU’s
runqueue, it stays on that CPU forever

* What if all the processes on CPU 0 exit, and all of the
processes on CPU 1 fork more children?

* We need to periodically rebalance
* Balance overheads against benefits

— Figuring out where to move tasks isn’t free

38

COMP 790: OS Implementation

Average load
* How do we measure how busy a CPU is?
* Average number of runnable tasks over time
* Available in /proc/loadavg

40

COMP 790: OS Implementation

Why not rebalance?
* Intuition: If things run slower on another CPU
* Why might this happen?
— NUMA (Non-Uniform Memory Access)
— Hyper-threading
— Multi-core cache behavior
* Vs: Symmetric Multi-Processor (SMP) — performance
on all CPUs is basically the same

42

COMP 790: OS Implementation

SMP

Memory

* All CPUs similar, equally “close” to memory

43

43

COMP 790: OS Implementation

Scheduling Domains
* General abstraction for CPU topology
* “Tree” of CPUs
— Each leaf node contains a group of “close” CPUs
* When an idle CPU rebalances, it starts at leaf node
and works up to the root
— Most rebalancing within the leaf
— Higher threshold to rebalance across a parent

45

COMP 790: OS Implementation

NUMA Scheduling Domains

Higher

CPUO starts threshold to

rebalancing move to
here first sibling/pare
nt

CPUO CpPU1

2/21/20

COMP 790: OS Implementation

CPUO CPU3

* Want to keep execution near memory; higher migration
costs

44
COMP 790: OS Implementation
SMP Scheduling Domain
‘ CPUO ‘ ‘ CPU1 ‘ ‘ CPU2 ‘ ‘ CPU3 ‘
Flat, all CPUS
equivalent!
46

COMP 790: OS Implementation

Hyper-threading
* Precursor to multi-core

— A few more transistors than Intel knew what to do with,
but not enough to build a second core on a chip yet

* Duplicate architectural state (registers, etc), but not
execution resources (ALU, floating point, etc)

* OS view: 2 logical CPUs

* CPU: pipeline bubble in one “CPU” can be filled with
operations from another; yielding higher utilization

47

48

COMP 790: OS Implementation

Hyper-threaded scheduling
* Imagine 2 hyper-threaded CPUs
— 4 Logical CPUs
— But only 2 CPUs-worth of power
* Suppose | have 2 tasks

— They will do much better on 2 different physical CPUs than
sharing one physical CPU

* They will also contend for space in the cache

— Less of a problem for threads in same program. Why?

49

49

COMP 790: OS Implementation

Multi-core
* More levels of caches
* Migration among CPUs sharing a cache preferable
— Why?
— More likely to keep data in cache
* Scheduling domains based on shared caches

— E.g., cores on same chip are in one domain

51

COMP 790: OS Implementation

Setting priorities
* setpriority(which, who, niceval) and getpriority()
— Which: process, process group, or user id
— PID, PGID, or UID
— Niceval: -20 to +19 (recall earlier)
* nice(niceval)
— Historical interface (backwards compatible)

— Equivalent to:
« setpriority(PRIO_PROCESS, getpid(), niceval)

2/21/20

COMP 790: OS Implementation

NUMA + Hyperthreading Domains

Logical Physical

CPU CPU

ﬁ domain l/

E
5

0

50

COMP 790: OS Implementation

Outline
* Policy goals
* Low-level mechanisms
* 0O(1) Scheduler
* CPU topologies
* Scheduling interfaces

52

COMP 790: OS Implementation

Scheduler Affinity

* sched_setaffinity and sched_getaffinity

* Can specify a bitmap of CPUs on which this can be
scheduled
— Better not be 0!

 Useful for benchmarking: ensure each thread on a
dedicated CPU

53

54

[l COMP 790: OS Implementation

2/21/20

yield
* Moves a runnable task to the expired runqueue

— Unless real-time (more later), then just move to the end of
the active runqueue

* Several other real-time related APIs

COMP 790: OS Implementation

Summary
Understand competing scheduling goals
Understand how context switching implemented
Understand O(1) scheduler + rebalancing

Understand various CPU topologies and scheduling
domains

Scheduling system calls

55

56

10

