[l COMP 790: OS Implementation

2/21/20

Scheduling, Part 2

Don Porter

COMP 790: OS Implementation

Logical Diagram

Today’s Lecture
Switching to CPU
scheduling

Memory

Device
Management

CPU
Drivers

Scheduler

[Interrupts} [Dis J [Net J [Consistency JHardware

2

(LIl COMP 790: OS Implementation

Last time...
* Scheduling overview, key trade-offs, etc.
* 0(1) scheduler — older Linux scheduler

* Today:
— Completely Fair Scheduler (CFS) — new hotness
— Other advanced scheduling issues

* Real-time scheduling
* Kernel preemption

COMP 790: OS Implementation

Fair Scheduling
* Simple idea: 50 tasks, each should get 2% of CPU
time
* Do we really want this?
— What about priorities?
— Interactive vs. batch jobs?
— CPU topologies?
— Per-user fairness?

« Alice has one task and Bob has 49; why should Bob get 98% of CPU
time?

— Etc.?

(LIl COMP 790: OS Implementation

Editorial
* Real issue: O(1) scheduler bookkeeping is
complicated

— Heuristics for various issues makes it more complicated

— Heuristics can end up working at cross-purposes

* Software engineering observation:

— Kernel developers better understood scheduling issues and
workload characteristics, could make more informed
design choice

* Elegance: Structure (and complexity) of solution
matches problem

COMP 790: OS Implementation

CFS idea

* Back to a simple list of tasks (conceptually)
* Ordered by how much time they’ve had

— Least time to most time
* Always pick the “neediest” task to run

— Until it is no longer neediest

— Then re-insert old task in the timeline

— Schedule the new neediest

[l COMP 790: OS Implementation

CFS Example

List sorted by
how many
“ticks” the task
has had

Schedule
“neediest” task

(L] COMP 790: OS Implementation

But lists are inefficient
* Duh! That’s why we really use a tree

— Red-black tree: 9/10 Linux developers recommend it
* log(n) time for:

— Picking next task (i.e., search for left-most task)

— Putting the task back when it is done (i.e., insertion)

— Remember: n is total number of tasks on system

(L] COMP 790: OS Implementation

More details
* Task’s ticks make key in RB-tree
— Fewest tick count get serviced first
* No more runqueues

— Just a single tree-structured timeline

11

COMP 790: OS Implementation

CFS Example

ENa RV R EY
)

Once no longer
the neediest, put
back on the list

COMP 790: OS Implementation

Details

Global virtual clock: ticks at a fraction of real time
— Runqueue->fair_clock

— Fraction is number of total tasks

Each task counts how many clock ticks it has had
Example: 4 tasks, equal number of virtual ticks

— Global vclock ticks once every 4 real ticks

— Each task scheduled for one real tick; advances local clock
by one tick

10

COMP 790: OS Implementation

CFS Example (more realistic)

Global Ticks: 12 * Tasks sorted by ticks
executed

ﬁ * 4 ticks for first task

* Reinsert into list

ﬁ Q 1 tick to new first task

12

(L[l

COMP 790: OS Implementation

2/21/20

Edge case 1

* What about a new task?

long time?
* Strategies:

— Could initialize to current time (start at right)
— Could get half of parent’s deficit

— If task ticks start at zero, doesn’t it get to unfairly run for a

COMP 790: OS Implementation

What happened to priorities?
* Priorities let me be delibe infai
Note: 10:1 ratiois a
made-up example.
See code for real
weights.

— This is a useful feature
* In CFS, priorities weig
* Example:

kn

— For a high-priority task,av
10 actual clock ticks

— For a low-priority task, a virtual, task-local tick may only
last for 1 actual clock tick

<y last for

* Result: Higher-priority tasks run longer, low-priority
tasks make some progress

13

14

COMP 790: OS Implementation

Interactive latency
* Recall: GUI programs are I/O bound
— We want them to be responsive to user input
— Need to be scheduled as soon as input is available
— Will only run for a short time

COMP 790: OS Implementation

GUI program strategy

Just like O(1) scheduler, CFS takes blocked programs
out of the RB-tree of runnable processes

Virtual clock continues ticking while tasks are
blocked

— Increasingly large deficit between task and global vclock

When a GUI task is runnable, generally goes to the
front

— Dramatically lower vclock value than CPU-bound jobs
— Reminder: “front” is left side of tree

15

16

COMP 790: OS Implementation

Other refinements
* Per group or user scheduling

— Real to virtual tick ratio becomes a function of number of
both global and user’s/group’s tasks

* Unclear how CPU topologies are addressed

COMP 790: OS Implementation

Recap: Ticks galore!
Real time is measured by a timer device, which
“ticks” at a certain frequency by raising a timer
interrupt
A process’s virtual tick is some number of real ticks

— We implement priorities, per-user fairness, etc. by tuning
this ratio

The global tick counter tracks maximum possible
virtual ticks

— Used to calculate one’s deficit

17

18

[l COMP 790: OS Implementation

CFS Summary

Simple idea: logically a queue of runnable tasks,
ordered by who has had the least CPU time

* Implemented with a tree for fast lookup, reinsertion
* Global clock counts virtual ticks

Priorities and other features/tweaks implemented by
playing games with length of a virtual tick

— Virtual ticks vary in wall-clock length per-process

19

(LIl COMP 790: OS Implementation

Strawman

* If I know it takes n ticks to process a frame of audio,
just schedule my application n ticks before the
deadline

* Problems?

* Hard to accurately estimate n
— Interrupts
— Cache misses
— Disk accesses
— Variable execution time depending on inputs

21

(LIl COMP 790: OS Implementation

Simple hack
* Create a highest-priority scheduling class for real-
time process
— SCHED_RR — RR == round robin
* RR tasks fairly divide CPU time amongst themselves
— Pray that it is enough to meet deadlines
— If so, other tasks share the left-overs
* Assumption: like GUI programs, RR tasks will spend
most of their time blocked on I/O
— Latency is key concern

23

2/21/20

COMP 790: OS Implementation

Real-time scheduling

« Different model: need to do a modest amount of
work by a deadline
* Example:

— Audio application needs to deliver a frame every nth of a
second

— Too many or too few frames unpleasant to hear

20

COMP 790: OS Implementation

Hard problem
* Gets even worse with multiple applications +
deadlines
* May not be able to meet all deadlines
* Interactions through shared data structures worsen
variability
— Block on locks held by other tasks
— Cached file system data gets evicted

— Optional reading (interesting): Nemesis — an OS without
shared caches to improve real-time scheduling

22

COMP 790: OS Implementation

Next issue: Kernel time
* Should time spent in the OS count against an
application’s time slice?
— Yes: Time in a system call is work on behalf of that task

— No: Time in an interrupt handler may be completing 1/0
for another task

24

[l COMP 790: OS Implementation

Timeslices + syscalls
System call times vary

Context switches generally at system call boundary
— Can also context switch on blocking I/O operations
If a time slice expires inside of a system call:

— Task gets rest of system call “for free”
« Steals from next task

— Potentially delays interactive/real time task until finished

25

COMP 790: OS Implementation

Kernel Preemption
Implementation: actually not too bad

— Essentially, it is transparently disabled with any locks held
— Afew other places disabled by hand

Result: Ul programs a bit more responsive

27

2/21/20

COMP 790: OS Implementation

Idea: Kernel Preemption
* Why not preempt system calls just like user code?
¢ Well, because it is harder, duh!
* Why?
— May hold a lock that other tasks need to make progress

— May be in a sequence of HW config options that assumes it
won'’t be interrupted

* General strategy: allow fragile code to disable
preemption

— Cf: Interrupt handlers can disable interrupts if needed

26

COMP 790: OS Implementation

Summary
* Understand:
— Completely Fair Scheduler (CFS)
— Real-time scheduling issues
— Kernel preemption

28

