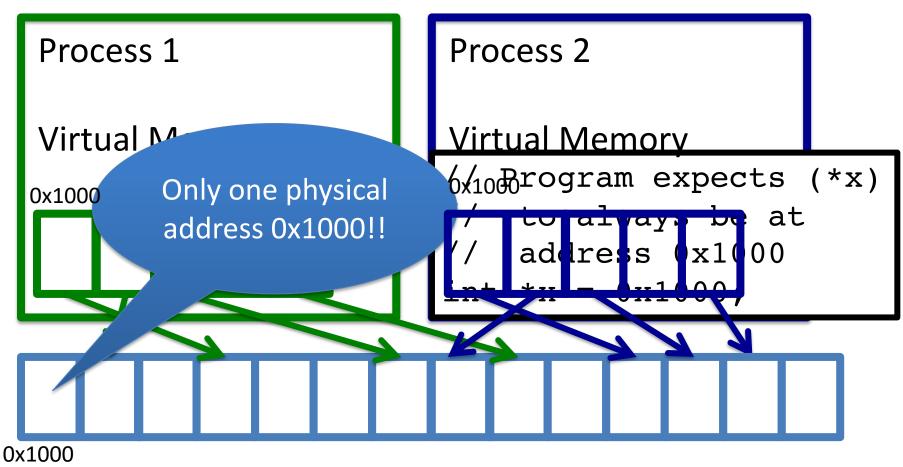

x86 Memory Protection and Translation

Don Porter

Lecture Goal


- Understand the hardware tools available on a modern x86 processor for manipulating and protecting memory
- Lab 2: You will program this hardware
- Apologies: Material can be a bit dry, but important
 - Plus, slides will be good reference
- But, cool tech tricks:
 - How does thread-local storage (TLS) work?
 - An actual (and tough) Microsoft interview question

Undergrad Review

- What is:
 - Virtual memory?
 - Segmentation?
 - Paging?

Memory Mapping

Physical Memory

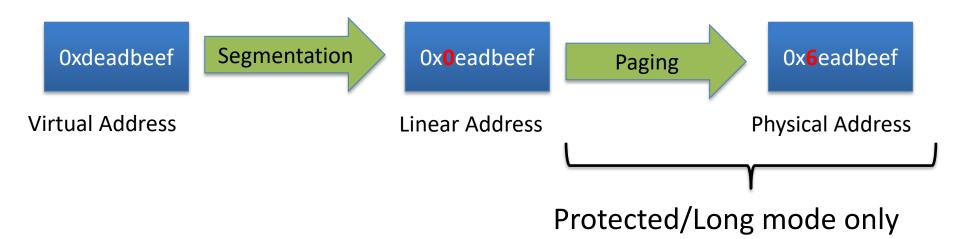
Two System Goals

- 1) Provide an abstraction of contiguous, isolated virtual memory to a program
- 2) Prevent illegal operations
 - Prevent access to other application or OS memory
 - Detect failures early (e.g., segfault on address 0)
 - More recently, prevent exploits that try to execute program data

Outline

- x86 processor modes
- x86 segmentation
- x86 page tables
- Advanced Features
- Interesting applications/problems

x86 Processor Modes


- Real mode walks and talks like a really old x86 chip
 - State at boot
 - 20-bit address space, direct physical memory access
 - 1 MB of usable memory
 - Segmentation available (no paging)
- Protected mode Standard 32-bit x86 mode
 - Segmentation and paging
 - Privilege levels (separate user and kernel)

x86 Processor Modes

- Long mode 64-bit mode (aka amd64, x86_64, etc.)
 - Very similar to 32-bit mode (protected mode), but bigger
 - Restrict segmentation use
 - Garbage collect deprecated instructions
 - Chips can still run in protected mode with old instructions
- Even more obscure modes we won't discuss today

Translation Overview

- Segmentation cannot be disabled!
 - But can be a no-op (aka flat mode)

x86 Segmentation

- A segment has:
 - Base address (linear address)
 - Length
 - Permissions

Programming model

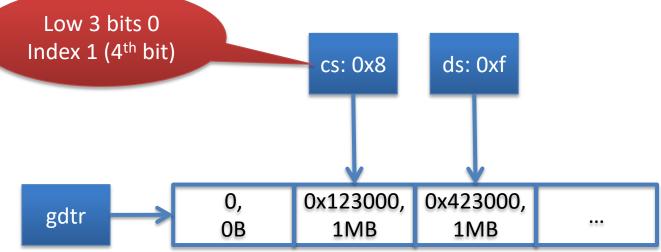
- Segments for: code, data, stack, "extra"
 - A program can have up to 6 total segments
 - Segments identified by registers: cs, ds, ss, es, fs, gs
- Prefix all memory accesses with desired segment:
 - mov eax, ds:0x80 (load offset 0x80 from data into eax)
 - jmp cs:0xab8 (jump execution to code offset 0xab8)
 - mov ss:0x40, ecx (move ecx to stack offset 0x40)

Segmented Programming Pseudo-example

Programming, cont.

- This is cumbersome, so infer code, data and stack segments by instruction type:
 - Control-flow instructions use code segment (jump, call)
 - Stack management (push/pop) uses stack
 - Most loads/stores use data segment
- Extra segments (es, fs, gs) must be used explicitly

Segment management


- For safety (without paging), only the OS should define segments. Why?
- Two segment tables the OS creates in memory:
 - Global any process can use these segments
 - Local segment definitions for a specific process
- How does the hardware know where they are?
 - Dedicated registers: gdtr and ldtr
 - Privileged instructions: lgdt, lldt

Segment registers

Set by the OS on fork, context switch, etc.

Segments Illustrated

call cs:
$$0xf150 \longrightarrow 0x123000 + 0xf150$$

= $0x123150$

Sample Problem: (Old) JOS Bootloader

- Suppose my kernel is compiled to be in upper 256
 MB of a 32-bit address space (i.e., 0xf0100000)
 - Common to put OS kernel at top of address space
- Bootloader starts in real mode (only 1MB of addressable physical memory)
- Bootloader loads kernel at 0x00100000
 - Can't address 0xf0100000

Booting problem

- Kernel needs to set up and manage its own page tables
 - Paging can translate 0xf0100000 to 0x00100000
- But what to do between the bootloader and kernel code that sets up paging?

Segmentation to the Rescue!

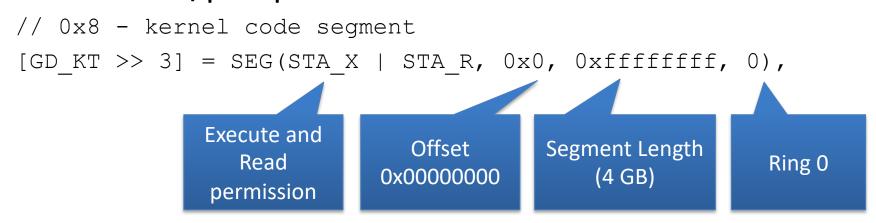
- kern/entry.S:
 - What is this code doing?

mygdt:

```
SEG_NULL # null seg
SEG(STA_X|STA_R, -KERNBASE, 0xffffffff) # code seg
SEG(STA W, -KERNBASE, 0xfffffff) # data seg
```

JOS ex 1, cont.

SEG (STA_X|STA_R, -KERNBASE, 0xfffffff) # code seg


Execute and Read Permission Offset -0xf0000000 Segment Length (4 GB)

```
jmp 0xf01000db8  # virtual addr. (implicit cs seg)
jmp (0xf01000db8 + -0xf0000000)
jmp 0x001000db8  # linear addr.
```

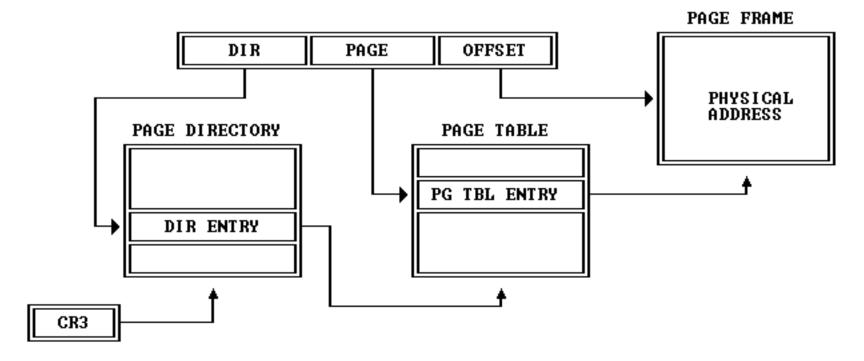

Flat segmentation

- The above trick is used for booting. We eventually want to use paging.
- How can we make segmentation a no-op?
- From kern/pmap.c:

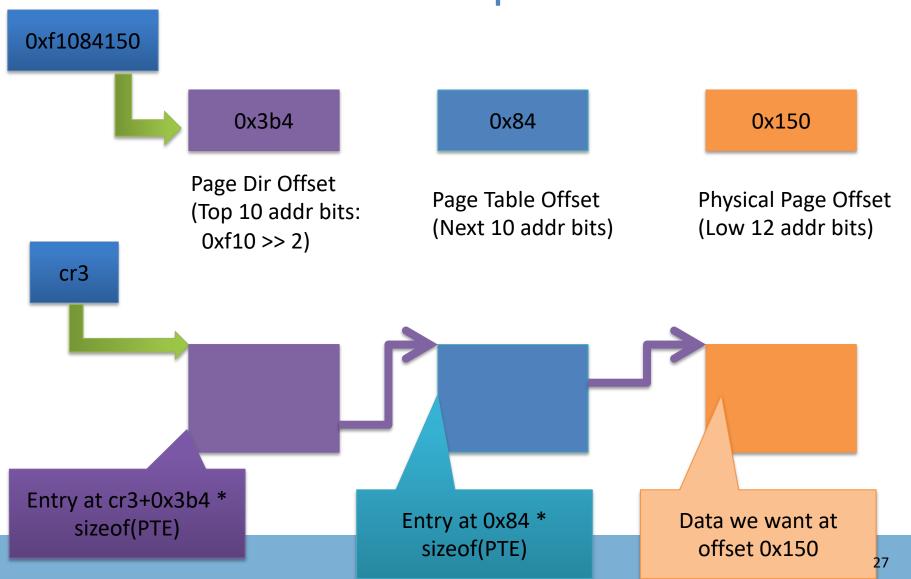
Outline

- x86 processor modes
- x86 segmentation
- x86 page tables
- Advanced Features
- Interesting applications/problems

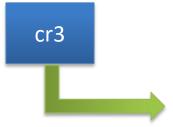
Paging Model


- 32 (or 64) bit address space.
- Arbitrary mapping of linear to physical pages
- Pages are most commonly 4 KB
 - Newer processors also support page sizes of 2 MB and 1
 GB

How it works


- OS creates a page table
 - Any old page with entries formatted properly
 - Hardware interprets entries
- cr3 register points to the current page table
 - Only ring0 can change cr3

Translation Overview


Figure 5-9. Page Translation

Example

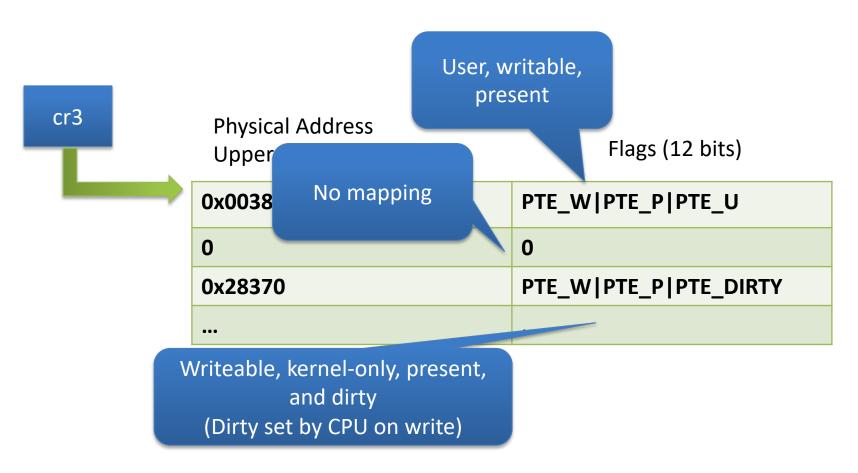
Page Table Entries

Physical Address Upper (20 bits)

Flags (12 bits)

0x00384	PTE_W PTE_P PTE_U
0	0
0x28370	PTE_W PTE_P
0	0
0	0
0	0
0	0
0	0

Page Table Entries

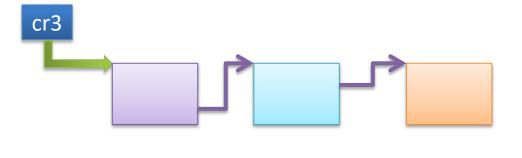

- Top 20 bits are the physical address of the mapped page
 - Why 20 bits?
 - 4k page size == 12 bits of offset
- Lower 12 bits for flags

Page flags

- 3 for OS to use however it likes
- 4 reserved by Intel, just in case
- 3 for OS to CPU metadata
 - User/vs kernel page,
 - Write permission,
 - Present bit (so we can swap out pages)
- 2 for CPU to OS metadata
 - Dirty (page was written), Accessed (page was read)

Page Table Entries

Back of the envelope


- If a page is 4K and an entry is 4 bytes, how many entries per page?
 - -1k
- How large of an address space can 1 page represent?
 - 1k entries * 1page/entry * 4K/page = 4MB
- How large can we get with a second level of translation?
 - 1k tables/dir * 1k entries/table * 4k/page = 4 GB
 - Nice that it works out that way!

Challenge questions

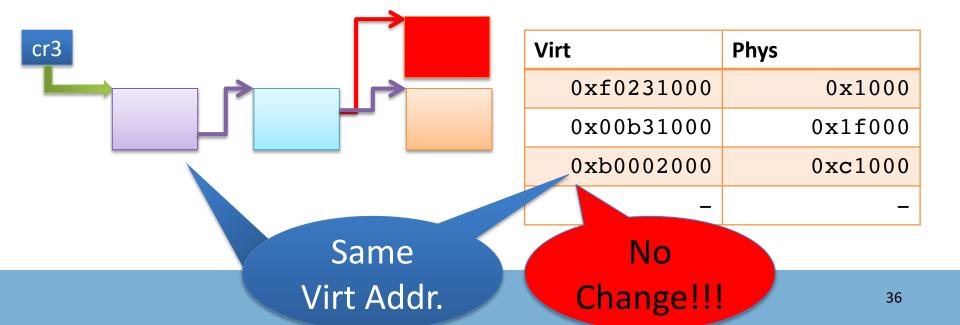
- What is the space overhead of paging?
 - I.e., how much memory goes to page tables for a 4 GB address space?
- What is the optimal number of levels for a 64 bit page table?
- When would you use a 2 MB or 1 GB page size?

TLB Entries

- The CPU caches address translations in the TLB
 - Translation Lookaside Buffer

Virt	Phys
0xf0231000	0x1000
0x00b31000	0x1f000
0xb0002000	0xc1000
_	_

Page Traversal is **Slow**


Table Lookup is Fast

TLB Entries

- The CPU caches address translations in the TLB
- Translation Lookaside BufferThe TLB is not coherent with memory, meaning:
 - If you change a PTE, you need to manually invalidate cached values
 - See the tlb_invalidate() function in JOS

TLB Entries

- The TLB is not coherent with memory, meaning:
 - If you change a PTE, you need to manually invalidate cached values
 - See the tlb_invalidate() function in JOS

Outline

- x86 processor modes
- x86 segmentation
- x86 page tables
- Advanced Features
- Interesting applications/problems

Physical Address Extension (PAE)

- Period with 32-bit machines + >4GB RAM (2000's)
- Essentially, an early deployment of a 64-bit page table format
- Any given process can only address 4GB
 - Including OS!
- Page tables themselves can address >4GB of physical pages

No execute (NX) bit

- Many security holes arise from bad input
 - Tricks program to jump to unintended address
 - That happens to be on heap or stack
 - And contains bits that form malware
- Idea: execute protection can catch these
 - Feels a bit like code segment, no?
- Bit 63 in 64-bit page tables (or 32 bit + PAE)

Nested page tables

- Paging tough for early Virtual Machine implementations
 - Can't trust a guest OS to correctly modify pages
- So, add another layer of paging between hostphysical and guest-physical

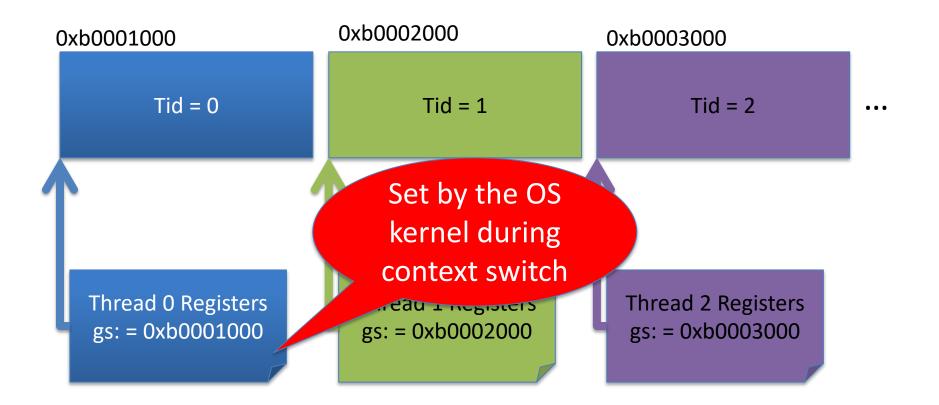
And now the fun stuff...

Thread-Local Storage (TLS)

```
// Global
__thread int tid;
...
printf ("my thread id is %d\n", tid);
```

Identical code gets
different value in each
thread

Thread-local storage (TLS)


- Convenient abstraction for per-thread variables
- Code just refers to a variable name, accesses private instance
- Example: Windows stores the thread ID (and other info) in a thread environment block (TEB)
 - Same code in any thread to access
 - No notion of a thread offset or id
- How to do this?

TLS implementation

- Map a few pages per thread into a segment
- Use an "extra" segmentation register
 - Usually gs
 - Windows TEB in fs
- Any thread accesses first byte of TLS like this: mov eax, gs:(0x0)

TLS Illustration

printf ("My thread id is %d\n", gs:tid);

Viva segmentation!

- My undergrad OS course treated segmentation as a historical artifact
 - Yet still widely (ab)used
 - Also used for sandboxing in vx32, Native Client
 - Used to implement early versions of VMware
- Counterpoint: TLS hack is just compensating for lack of general-purpose registers
- Either way, all but fs and gs are deprecated in x64

Microsoft interview question

- Suppose I am on a low-memory x86 system (<4MB).
 I don't care about swapping or addressing more than 4MB.
- How can I keep paging space overhead at one page?
 - Recall that the CPU requires 2 levels of addr. translation

Solution sketch

- A 4MB address space will only use the low 22 bits of the address space.
 - So the first level translation will always hit entry 0
- Map the page table's physical address at entry 0
 - First translation will "loop" back to the page table
 - Then use page table normally for 4MB space
- Assumes correct programs will not read address 0
 - Getting null pointers early is nice
 - Challenge: Refine the solution to still get null pointer exceptions

Conclusion

• Lab 2 will be fun