
1	

Concurrent Programing:
Why you should care, deeply

Don Porter

Portions courtesy Emmett Witchel

2	

Uniprocessor	 Performance	 Not	 Scaling	

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
er

fo
rm

an
ce

 (
vs

.
V

A
X

-1
1/

78
0)

25% /year

52% /year

20% /year

Graph by Dave Patterson

3	

Power	 and	 heat	 lay	 waste	 to	 processor	 makers	

! Intel P4 (2000-2007)
Ø  1.3GHz to 3.8GHz, 31 stage pipeline
Ø  “Prescott” in 02/04 was too hot. Needed 5.2GHz to beat

2.6GHz Athalon

! Intel Pentium Core, (2006-)
Ø  1.06GHz to 3GHz, 14 stage pipeline
Ø Based on mobile (Pentium M) micro-architecture

 Power efficient
! 2% of electricity in the U.S. feeds computers

Ø Doubled in last 5 years

4	

What	 about	 Moore’s	 law?	

! Number of transistors double every 24 months
Ø Not performance!

5	

Architectural	 trends	 that	 favor	 multicore	

! Power is a first class design constraint
Ø Performance per watt the important metric

! Leakage power significant with small transisitors
Ø Chip dissipates power even when idle!

! Small transistors fail more frequently
Ø  Lower yield, or CPUs that fail?

! Wires are slow
Ø  Light in vacuum can travel ~1m in 1 cycle at 3GHz
Ø Motivates multicore designs (simpler, lower-power cores)

! Quantum effects
! Motivates multicore designs (simpler, lower-power

cores)

6	

Multicores are here, and coming fast!

Sun Rock

“[AMD] quad-core processors … are just the beginning….”
 http://www.amd.com

“Intel has more than 15 multi-core related projects underway”
 http://www.intel.com

Intel TeraFLOP AMD Quad Core

4 cores in 2007 16 cores in 2009 80 cores in 20??

7	

Multicore	 programming	 will	 be	 in	 demand	

! Hardware manufacturers betting big on multicore
! Software developers are needed
! Writing concurrent programs is not easy
! You will learn how to do it in this class

8	

Concurrency	 Problem	

! Order of thread execution is non-deterministic
Ø Multiprocessing

  A system may contain multiple processors è cooperating
threads/processes can execute simultaneously

Ø Multi-programming
  Thread/process execution can be interleaved because of time-

slicing

! Operations often consist of multiple, visible steps
Ø Example: x = x + 1 is not a single operation

  read x from memory into a register
  increment register
  store register back to memory

! Goal:
Ø Ensure that your concurrent program works under ALL

possible interleaving

Thread 2
read
increment
store

9	

Questions	

! Do the following either completely succeed or
completely fail?

! Writing an 8-bit byte to memory
Ø A. Yes B. No

! Creating a file
Ø A. Yes B. No

! Writing a 512-byte disk sector
Ø A. Yes B. No

10	

Sharing	 among	 threads	 increases	 performance…	

int a = 1, b = 2;
main() {

 CreateThread(fn1, 4);
 CreateThread(fn2, 5);

}
fn1(int arg1) {

 if(a) b++;
}
fn2(int arg1) {

 a = arg1;
}

What are the values of a & b
at the end of execution?

11	

Sharing	 among	 theads	 increases	 performance,	 but	 can	
lead	 to	 problems!!	

int a = 1, b = 2;
main() {

 CreateThread(fn1, 4);
 CreateThread(fn2, 5);

}
fn1(int arg1) {

 if(a) b++;
}
fn2(int arg1) {

 a = 0;
}

What are the values of a & b
at the end of execution?

12	

Some	 More	 Examples	

! What are the possible values of x in these cases?

Thread1: x = 1; Thread2: x = 2;

Initially y = 10;
Thread1: x = y + 1; Thread2: y = y * 2;

Initially x = 0;
Thread1: x = x + 1; Thread2: x = x + 2;

13	

Critical	 Sections	

! A critical section is an abstraction
Ø  Consists of a number of consecutive program instructions
Ø  Usually, crit sec are mutually exclusive and can wait/signal

  Later, we will talk about atomicity and isolation
! Critical sections are used frequently in an OS to protect data

structures (e.g., queues, shared variables, lists, …)
! A critical section implementation must be:

Ø Correct: the system behaves as if only 1 thread can execute
in the critical section at any given time

Ø Efficient: getting into and out of critical section must be fast.
Critical sections should be as short as possible.

Ø Concurrency control: a good implementation allows
maximum concurrency while preserving correctness

Ø  Flexible: a good implementation must have as few
restrictions as practically possible

14	

The	 Need	 For	 Mutual	 Exclusion	

! Running multiple processes/threads in parallel
increases performance

! Some computer resources cannot be accessed by
multiple threads at the same time
Ø E.g., a printer can’t print two documents at once

! Mutual exclusion is the term to indicate that some
resource can only be used by one thread at a time
Ø Active thread excludes its peers

! For shared memory architectures, data structures are
often mutually exclusive
Ø  Two threads adding to a linked list can corrupt the list

15	

Exclusion	 Problems,	 Real	 Life	 Example	

! Imagine multiple chefs in the same kitchen
Ø Each chef follows a different recipe

! Chef 1
Ø Grab butter, grab salt, do other stuff

! Chef 2
Ø Grab salt, grab butter, do other stuff

! What if Chef 1 grabs the butter and Chef 2 grabs the
salt?
Ø Yell at each other (not a computer science solution)
Ø Chef 1 grabs salt from Chef 2 (preempt resource)
Ø Chefs all grab ingredients in the same order

  Current best solution, but difficult as recipes get complex
  Ingredient like cheese might be sans refrigeration for a while

16	

The	 Need	 To	 Wait	

! Very often, synchronization consists of one thread
waiting for another to make a condition true
Ø Master tells worker a request has arrived
Ø Cleaning thread waits until all lanes are colored

! Until condition is true, thread can sleep
Ø  Ties synchronization to scheduling

! Mutual exclusion for data structure
Ø Code can wait (await)
Ø Another thread signals (notify)

17	

Example	 2:	 Traverse	 a	 singly-‐linked	 list	

! Suppose we want to find an element in a singly linked
list, and move it to the head

! Visual intuition:
lhead	

lptr	
lprev	

18	

Example	 2:	 Traverse	 a	 singly-‐linked	 list	

! Suppose we want to find an element in a singly linked
list, and move it to the head

! Visual intuition:
lhead	

lptr	
lprev	

19	

Even	 more	 real	 life,	 linked	 lists	

! Where is the critical section?

lprev = NULL;
for(lptr = lhead; lptr; lptr = lptr->next) {
 if(lptr->val == target){

 // Already head?, break
 if(lprev == NULL) break;
 // Move cell to head
 lprev->next = lptr->next;
 lptr->next = lhead;
 lhead = lptr;
 break;
 }
 lprev = lptr;
}

20	

Even	 more	 real	 life,	 linked	 lists	

! A critical section often needs to be larger than it first
appears
Ø  The 3 key lines are not enough of a critical section

 // Move cell to head
 lprev->next = lptr->next;
 lptr->next = lhead
 lhead = lptr;

lprev->next = lptr->next;
lptr->next = lhead;
lhead = lptr;

Thread 1	
 Thread 2	

lhead	
 elt	

lptr	
lprev	

lhead	

elt	

lptr	
lprev	

21	

Even	 more	 real	 life,	 linked	 lists	

! Putting entire search in a critical section reduces
concurrency, but it is safe.

if(lptr->val == target){
 elt = lptr;
 // Already head?, break
 if(lprev == NULL) break;
 // Move cell to head
 lprev->next = lptr->next;
 // lptr no longer in list

for(lptr = lhead; lptr;
 lptr = lptr->next) {
 if(lptr->val == target){

Thread 1	
 Thread 2	

22	

Safety	 and	 Liveness	

! Safety property : “nothing bad happens”
Ø  holds in every finite execution prefix

  Windows™ never crashes
  a program never terminates with a wrong answer

! Liveness property: “something good eventually happens”
Ø  no partial execution is irremediable

  Windows™ always reboots
  a program eventually terminates

! Every property is a combination of a safety property and a
liveness property - (Alpern and Schneider)

23	

Safety	 and	 liveness	 for	 critical	 sections	

! At most k threads are concurrently in the critical section
Ø  A. Safety
Ø  B. Liveness
Ø  C. Both

! A thread that wants to enter the critical section will eventually

succeed
Ø  A. Safety
Ø  B. Liveness
Ø  C. Both

! Bounded waiting: If a thread i is in entry section, then there is a
bound on the number of times that other threads are allowed to
enter the critical section (only 1 thread is alowed in at a time)
before thread i’s request is granted.
Ø  A. Safety B. Liveness C. Both

