
1	

Condition Synchronization

2	

Synchronization	

! Now that you have seen locks, is that all there is?

! No, but what is the “right” way to build a parallel
program.
Ø People are still trying to figure that out.

! Compromises:
Ø  between making it easy to modify shared variables AND
Ø  restricting when you can modify shared variables.
Ø  between really flexible primitives AND
Ø  simple primitives that are easy to reason about.

3	

Beyond	
 Locks	

! Synchronizing on a condition.
Ø When you start working on a synchronization problem, first

define the mutual exclusion constraints, then ask “when does
a thread wait”, and create a separate synchronization
variable representing each constraint.

! Bounded Buffer problem – producer puts things in a
fixed sized buffer, consumer takes them out.
Ø What are the constraints for bounded buffer?
Ø  1) only one thread can manipulate buffer queue at a time

(mutual exclusion)
Ø  2) consumer must wait for producer to fill buffers if none full

(scheduling constraint)
Ø  3) producer must wait for consumer to empty buffers if all full

(scheduling constraint)

4	

Beyond	
 Locks	

! Locks ensure mutual exclusion
! Bounded Buffer problem – producer puts things in a

fixed sized buffer, consumer takes them out.
Ø Synchronizing on a condition.

Class BoundedBuffer{
 …
 void* buffer[];
 Lock lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 lockàacquire();
 while (count == n); //spin
 Add c to the buffer;
 count++;
 lockàrelease();
}

BoundedBuffer::Remove(c){
 lockàacquire();
 while (count == 0); // spin
 Remove c from buffer;
 count--;
 lockàrelease();
}

What is wrong
with this?

5	

Beyond	
 Locks	

Class BoundedBuffer{
 …
 void* buffer[];
 Lock lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 while (count == n); //spin
 lockàacquire();
 Add c to the buffer;
 count++;
 lockàrelease();
}

BoundedBuffer::Remove(c){
 while (count == 0); // spin
 lockàacquire();
 Remove c from buffer;
 count--;
 lockàrelease();
}

What is wrong
with this?

6	

Beyond	
 Locks	

Class BoundedBuffer{
 …
 void* buffer[];
 Lock lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 if (count == n) sleep();
 lock->acquire();
 Add c to the buffer;
 count++;
 lock->release();
 if(count == 1) wakeup(remove);
}

BoundedBuffer::Remove(c){
 if (count == 0) sleep();
 lock->acquire();
 Remove c from buffer;
 count--;
 lock->release();
 if(count==n-1) wakeup(deposit);
}

What is wrong
with this?

7	

Beyond	
 Locks	

Class BoundedBuffer{
 …
 void* buffer[];
 Lock lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 lockàacquire();
 if (count == n) sleep();
 Add c to the buffer;
 count++;
 if(count == 1) wakeup(remove);
 lockàrelease();
}

BoundedBuffer::Remove(c){
 lockàacquire();
 if (count == 0) sleep();
 Remove c from buffer;
 count--;
 if(count==n-1) wakeup(deposit);
 lockàrelease();
}

What is wrong
with this?

8	

Beyond	
 Locks	

Class BoundedBuffer{
 …
 void* buffer[];
 Lock lock;
 int count = 0;
}

BoundedBuffer::Deposit(c){
 while(1) {
 lockàacquire();
 if(count == n) {
 lock->release();
 continue;}
 Add c to the buffer;
 count++;
 lockàrelease();
 break;
}}

BoundedBuffer::Remove(c){
 while(1) {
 lockàacquire();
 if (count == 0) {
 lock->release();
 continue;
 }
 Remove c from buffer;
 count--;
 lockàrelease();
 break;
}}

What is wrong
with this?

9	

Introducing	
 Condition	
 Variables	

! Correctness requirements for bounded buffer producer-
consumer problem
Ø  Only one thread manipulates the buffer at any time (mutual

exclusion)
Ø  Consumer must wait for producer when the buffer is empty

(scheduling/synchronization constraint)
Ø  Producer must wait for the consumer when the buffer is full

(scheduling/synchronization constraint)

! Solution: condition variables
Ø  An abstraction that supports conditional synchronization
Ø  Condition variables are associated with a monitor lock
Ø  Enable threads to wait inside a critical section by releasing the

monitor lock.

10	

Condition	
 Variables:	
 Operations	

! Three operations
Ø  Wait()

  Release lock
  Go to sleep
  Reacquire lock upon return
  Java Condition interface await() and awaitUninterruptably()

Ø  Notify() (historically called Signal())
  Wake up a waiter, if any
  Condition interface signal()

Ø  NotifyAll() (historically called Broadcast())
  Wake up all the waiters
  Condition interface signalAll()

! Implementation
Ø  Requires a per-condition variable queue to be maintained
Ø  Threads waiting for the condition wait for a notify()

Wait() usually specified a lock
to be released as a parameter

11	

Implementing	
 Wait()	
 and	
 Notify()	

Condition::Wait(lock){
 schedLock->acquire();
 lock->numWaiting++;
 lockàrelease();
 Put TCB on the waiting queue for the CV;
 schedLock->release()
 switch();
 lockàacquire();
}

Condition::Notify(lock){
 schedLock->acquire();
 if (lock->numWaiting > 0) {

 Move a TCB from waiting queue to ready queue;
 lock->numWaiting--;

 }
 schedLock->release();
}

Why do we need
schedLock?

12	

Using	
 Condition	
 Variables:	
 An	
 Example	

! Coke machine as a shared buffer

! Two types of users
Ø  Producer: Restocks the coke machine
Ø  Consumer: Removes coke from the machine

! Requirements
Ø  Only a single person can access the machine at any time
Ø  If the machine is out of coke, wait until coke is restocked
Ø  If machine is full, wait for consumers to drink coke prior to restocking

! How will we implement this?
Ø  What is the class definition?
Ø  How many lock and condition variables do we need?

13	

Coke	
 Machine	
 Example	

Class CokeMachine{
 …
 Storge for cokes (buffer)
 Lock lock;
 int count = 0;
 Condition notFull, notEmpty;
}

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.notify();
 lockàrelease();
}

CokeMachine::Remove(){
 lockàacquire();
 while (count == 0) {

 notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.notify();
 lockàrelease();
}

14	

Coke	
 Machine	
 Example	

Class CokeMachine{
 …
 Storge for cokes (buffer)
 Lock lock;
 int count = 0;
 Condition notFull, notEmpty;
}

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.notify();
 lockàrelease();
}

CokeMachine::Remove(){
 lockàacquire();
 while (count == 0) {

 notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 lockàrelease();
 notFull.notify();
}

Liveness	

issue	

15	

Java	
 syntax	
 for	
 condition	
 variables	

! Condition variables created from locks
import java.util.concurrent.locks.ReentrantLock;
public static final aLock = new ReentrantLock();
public static ok = aLock.newCondition();
public static int count;
aLock.lock();
try {
 while(count < 16){ok.awaitUninterruptably()}
} finally {
 aLock.unlock();
}
return 0;

16	

Summary	

! Non-deterministic order of thread execution è concurrency
problems
Ø  Multiprocessing

  A system may contain multiple processors è cooperating threads/
processes can execute simultaneously

Ø  Multi-programming
  Thread/process execution can be interleaved because of time-slicing

! Goal: Ensure that your concurrent program works under ALL
possible interleaving

! Define synchronization constructs and programming style for
developing concurrent programs

  Locks à provide mutual exclusion
  Condition variables à provide conditional synchronization

