
1	

Semaphores and Monitors:
High-level Synchronization Constructs

2	

Synchronization	 Constructs 	 	

! Synchronization
Ø Coordinating execution of multiple threads that share data

structures

! Past few lectures:
Ø  Locks: provide mutual exclusion
Ø Condition variables: provide conditional synchronization

! Today: Historical perspective
Ø Semaphores

  Introduced by Dijkstra in 1960s
  Main synchronization primitives in early operating systems

Ø Monitors
  Alternate high-level language constructs
  Proposed by independently Hoare and Hansen in the 1970s

3	

Semaphores	

! Study these for history and compatibility
Ø  Don’t use semaphores in new code

! A non-negative integer variable with two atomic and isolated operations

! We assume that a semaphore is fair

Ø  No thread t that is blocked on a P() operation remains blocked if the V()
operation on the semaphore is invoked infinitely often

Ø  In practice, FIFO is mostly used, transforming the set into a queue.

SemaphoreàP() (Passeren; wait)
If sem > 0, then decrement sem by 1
Otherwise “wait” until sem > 0 and
then decrement

SemaphoreàV() (Vrijgeven; signal)
Increment sem by 1
Wake up a thread waiting in P()

4	

Key	 idea	 of	 Semaphores	 vs.	 Locks	

! Locks: Mutual exclusion only (1-exclusion)
! Semaphores: k-exclusion

Ø  k == 1, equivalent to a lock
 Sometimes called a mutex, or binary

semaphore
Ø  k == 2+, up to k threads at a time

! Many semaphore implementations use “up” and “down”,
rather than Dutch names (P and V, respectively)
Ø  ‘cause how many programmers speak Dutch?

! Semaphore starts at k
Ø  Acquire with down(), which decrements the count

 Blocks if count is 0
Ø  Release with up(), which increments the count and never blocks

5	

Important	 properties	 of	 Semaphores	

! Semaphores are non-negative integers

! The only operations you can use to change the value of a
semaphore are P()/down() and V()/up() (except for the initial
setup)
Ø  P()/down() can block, but V()/up() never blocks

! Semaphores are used both for
Ø  Mutual exclusion, and
Ø  Conditional synchronization

! Two types of semaphores
Ø  Binary semaphores: Can either be 0 or 1
Ø  General/Counting semaphores: Can take any non-negative value
Ø  Binary semaphores are as expressive as general semaphores

(given one can implement the other)

6	

! How many possible values can a binary semaphore
take?
Ø A. 0
Ø B. 1
Ø C. 2
Ø D. 3
Ø E. 4

7	

Using	 Semaphores	 for	 Mutual	 Exclusion	

! Use a binary semaphore for mutual exclusion

! Using Semaphores for producer-consumer with bounded buffer

Semaphore = new Semaphore(1);

SemaphoreàP();
 Critical Section;
SemaphoreàV();

int count;
Semaphore mutex;
Semaphore fullBuffers;
Semaphore emptyBuffers;

Use a separate
semaphore for
each
constraint

8	

Coke	 Machine	 Example	

! Coke machine as a shared buffer
! Two types of users

Ø Producer: Restocks the coke machine
Ø Consumer: Removes coke from the machine

! Requirements
Ø Only a single person can access the machine at any time
Ø  If the machine is out of coke, wait until coke is restocked
Ø  If machine is full, wait for consumers to drink coke prior to

restocking

! How will we implement this?
Ø How many lock and condition variables do we need?

  A. 1 B. 2 C. 3 D. 4 E. 5

9	

Revisiting	 Coke	 Machine	 Example	

Class CokeMachine{
 …
 int count;
 Semaphore new mutex(1);
 Semaphores new fullBuffers(0);
 Semaphores new emptyBuffers(numBuffers);
}

CokeMachine::Deposit(){
 emptyBuffersàP();
 mutexàP();
 Add coke to the machine;
 count++;
 mutexàV();
 fullBuffersàV();
}

CokeMachine::Remove(){
 fullBuffersàP();
 mutexàP();
 Remove coke from to the machine;
 count--;
 mutexàV();
 emptyBuffersàV();
}

Does the order of P matter?	
 Order of V matter?	

10	

Implementing	 Semaphores	

Semaphore::P() {
 if (value == 0) {
 Put TCB on wait queue for semaphore;
 Switch(); // dispatch a ready thread
 }
 else {value--;}
}

Semaphore::V() {
 if wait queue is not empty {
 Move a waiting thread to ready queue;
 } else
 value++;
 }
}

Does this work?	

11	

Implementing	 Semaphores	

Semaphore::P() {
 while (value == 0) {
 Put TCB on wait queue for semaphore;
 Switch(); // dispatch a ready thread
 }
 value--;
}

Semaphore::V() {
 if wait queue is not empty {
 Move a waiting thread to ready queue;
 }
 value++;
}

12	

The	 Problem	 with	 Semaphores	

CokeMachine::Deposit(){
 emptyBuffersàP();
 mutexàP();
 Add coke to the machine;
 count++;
 mutexàV();
 fullBuffersàV();
}

CokeMachine::Remove(){
 fullBuffersàP();
 mutexàP();
 Remove coke from to the machine;
 count--;
 mutexàV();
 emptyBuffersàV();
}

! Semaphores are used for dual purpose
Ø  Mutual exclusion
Ø  Conditional synchronization

! Difficult to read/develop code

! Waiting for condition is independent of mutual exclusion
Ø  Programmer needs to be clever about using semaphores

13	

! Separate the concerns of mutual exclusion and conditional
synchronization

! What is a monitor?
Ø  One lock, and
Ø  Zero or more condition variables for managing concurrent access to

shared data
! General approach:

Ø  Collect related shared data into an object/module
Ø  Define methods for accessing the shared data

! Monitors first introduced as programming language construct
Ø  Calling a method defined in the monitor automatically acquires the

lock
Ø  Examples: Mesa, Java (synchronized methods)

! Monitors also define a programming convention
Ø  Can be used in any language (C, C++, …)

Introducing	 Monitors	

14	

Critical	 Section:	 Monitors	

! Basic idea:
Ø Restrict programming model
Ø Permit access to shared variables only within a critical

section

! General program structure
Ø Entry section

  “Lock” before entering critical section
  Wait if already locked, or invariant doesn’t hold
  Key point: synchronization may involve wait

Ø Critical section code
Ø Exit section

  “Unlock” when leaving the critical section

! Object-oriented programming style
Ø Associate a lock with each shared object
Ø Methods that access shared object are critical sections
Ø Acquire/release locks when entering/exiting a method that

defines a critical section

15	

Remember	 Condition	 Variables 	 	

! Locks
Ø Provide mutual exclusion
Ø Support two methods

  Lock::Acquire() – wait until lock is free, then grab it
  Lock::Release() – release the lock, waking up a waiter, if any

! Condition variables
Ø Support conditional synchronization
Ø  Three operations

  Wait(): Release lock; wait for the condition to become true;
reacquire lock upon return (Java wait())

  Signal(): Wake up a waiter, if any (Java notify())
  Broadcast(): Wake up all the waiters (Java notifyAll())

Ø  Two semantics for implementation of wait() and signal()
  Hoare monitor semantics
  Hansen (Mesa) monitor semantics

16	

So	 what	 is	 the	 big	 idea?	

! (Editorial) Integrate idea of condition variable with
language
Ø  Facilitate proof
Ø Avoid error-prone boiler-plate code

17	

Coke	 Machine	 –	 Example	 Monitor	

Class CokeMachine{
 …
 Lock lock;
 int count = 0;
 Condition notFull, notEmpty;
}

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

CokeMachine::Remove(){
 lockàacquire();
 while (count == 0) {

 notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.signal();
 lockàrelease();
}

Does the order of
aquire/while(){wait}
matter?	

Order of release/signal	

matter?	

18	

Monitors:	 Recap	

! Lock acquire and release: often incorporated into
method definitions on object
Ø E.g., Java’s synchronized methods
Ø Programmer may not have to explicitly acquire/release

! But, methods on a monitor object do execute under
mutual exclusion

! Introduce idea of condition variable

19	

! Every monitor function should start with what?
Ø A. wait
Ø B. signal
Ø C. lock acquire
Ø D. lock release
Ø E. signalAll

20	

Hoare	 Monitors:	 Semantics	

! Hoare monitor semantics:
Ø  Assume thread T1 is waiting on condition x
Ø  Assume thread T2 is in the monitor
Ø  Assume thread T2 calls x.signal
Ø  T2 gives up monitor, T2 blocks!
Ø  T1 takes over monitor, runs
Ø  T1 gives up monitor
Ø  T2 takes over monitor, resumes

! Example

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
Lockàrelease();

fn4(…)
…
x.signal // T2 blocks

T2 resumes

T2 T1

21	

Hansen	 (Mesa)	 Monitors:	 Semantics	

! Hansen monitor semantics:
Ø  Assume thread T1 waiting on condition x
Ø  Assume thread T2 is in the monitor
Ø  Assume thread T2 calls x.signal; wake up T1
Ø  T2 continues, finishes
Ø  When T1 get a chance to run,T1 takes over monitor, runs
Ø  T1 finishes, gives up monitor

! Example:

fn1(…)
…
x.wait // T1 blocks

// T1 resumes
// T1 finishes

fn4(…)
…
x.signal // T2 continues
// T2 finishes

22	

Tradeoff

Hoare
! Claims:

Ø  Cleaner, good for proofs
Ø  When a condition variable is

signaled, it does not change
Ø  Used in most textbooks

! …but
Ø  Inefficient implementation
Ø  Not modular – correctness

depends on correct use and
implementation of signal

Hansen
! Signal is only a hint that the

condition may be true
Ø  Need to check condition again

before proceeding
Ø  Can lead to synchronization bugs

! Used by most systems (e.g., Java)

! Benefits:
Ø  Efficient implementation
Ø  Condition guaranteed to be true

once you are out of while !

CokeMachine::Deposit(){
 lockàacquire();
 if (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

23	

Problems	 with	 Monitors	
Nested	 Monitor	 Calls	

! What happens when one monitor calls into another?
Ø  What happens to CokeMachine::lock if thread sleeps in

CokeTruck::Unload?
Ø  What happens if truck unloader wants a coke?

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 truck->unload();
 Add coke to the machine;
 count++;
 notEmpty.signal();
 lockàrelease();
}

CokeTruck::Unload(){
 lockàacquire();
 while (soda.atDoor() != coke) {

 cokeAvailable.wait(&lock);}
 Unload soda closest to door;
 soda.pop();
 Signal availability for soda.atDoor();
 lockàrelease();
}

24	

More	 Monitor	 Headaches	
The	 priority	 inversion	 problem	

! Three processes (P1, P2, P3), and P1 & P3
communicate using a monitor M. P3 is the highest
priority process, followed by P2 and P1.

! 1. P1 enters M.
! 2. P1 is preempted by P2.
! 3. P2 is preempted by P3.
! 4. P3 tries to enter the monitor, and waits for the lock.
! 5. P2 runs again, preventing P3 from running,

subverting the priority system.
! A simple way to avoid this situation is to associate with

each monitor the priority of the highest priority process
which ever enters that monitor.

25	

Comparing	 Semaphores	 and	 Monitors	

CokeMachine::Deposit(){
 lockàacquire();
 while (count == n) {

 notFull.wait(&lock); }
 Add coke to the machine;
 count++;
 notEmpty.notify();
 lockàrelease();
}

CokeMachine::Deposit(){
 emptyBuffersàP();
 mutexàP();
 Add coke to the machine;
 count++;
 mutexàV();
 fullBuffersàV();
}

CokeMachine::Remove(){
 fullBuffersàP();
 mutexàP();
 Remove coke from to the machine;
 count--;
 mutexàV();
 emptyBuffersàV();
}

CokeMachine::Remove(){
 lockàacquire();
 while (count == 0) {

 notEmpty.wait(&lock); }
 Remove coke from to the machine;
 count--;
 notFull.notify();
 lockàrelease();
}

Which is better? 	

A. Semaphore	

B. Monitors	

26	

Other	 Interesting	 Topics	

! Exception handling
Ø What if a process waiting in a monitor needs to time out?

! Naked notify
Ø How do we synchronize with I/O devices that do not grab

monitor locks, but can notify condition variables.

! Butler Lampson and David Redell, “Experience with
Processes and Monitors in Mesa.”

27	

Summary	

! Synchronization
Ø Coordinating execution of multiple threads that share data

structures

! Past lectures:
Ø  Locks à provide mutual exclusion
Ø Condition variables à provide conditional synchronization

! Today:
Ø Semaphores

  Introduced by Dijkstra in 1960s
  Two types: binary semaphores and counting semaphores
  Supports both mutual exclusion and conditional synchronization

Ø Monitors
  Separate mutual exclusion and conditional synchronization

