
1	

Concurrent Programming Issues
& Readers/Writers

2	

Summary	
 of	
 Our	
 Discussions	

! Developing and debugging concurrent programs is
hard
Ø Non-deterministic interleaving of instructions

! Safety: isolation and atomicity
! Scheduling: busy-waiting and blocking
! Synchronization constructs

Ø  Locks: mutual exclusion
Ø Condition variables: wait while holding a lock
Ø Semaphores: Mutual exclusion (binary) and condition

synchronization (counting)
! How can you use these constructs effectively?

Ø Develop and follow strict programming style/strategy

3	

Programming	
 Strategy	

! Decompose the problem into objects
! Object-oriented style of programming

Ø  Identify shared chunk of state
Ø Encapsulate shared state and synchronization variables

inside objects

! Don’t manipulate shared variables or synchronization
variables along with the logic associated with a
thread

! Programs with race conditions always fail.
Ø A. True, B. False

4	

General	
 Programming	
 Strategy	

! Two step process

! Threads:
Ø  Identify units of concurrency – these are your threads
Ø  Identify chunks of shared state – make each shared “thing” an

object; identify methods for these objects (how will the thread
access the objects?)

Ø  Write down the main loop for the thread

! Shared objects:
Ø  Identify synchronization constructs

  Mutual exclusion vs. conditional synchronization
Ø  Create a lock/condition variable for each constraint
Ø  Develop the methods –using locks and condition variables – for

coordination

5	

Coding	
 Style	
 and	
 Standards	

! Always do things the same way

! Always use locks and condition variables

! Always hold locks while operating on condition variables

! Always acquire lock at the beginning of a procedure and release it at
the end
Ø  If it does not make sense to do this à split your procedures further

! Always use while to check conditions, not if

! (Almost) never sleep(), yield(), or isLocked() in your code

Ø  Use condition variables to synchronize
! Note that printf() internally uses locks, and may hide race conditions

while (predicate on state variable) {
 conditionVariableàwait(&lock);
 };

6	

Readers/Writers:	
 A	
 Complete	
 Example	

! Motivation
Ø Shared databases accesses

  Examples: bank accounts, airline seats, …

! Two types of users
Ø Readers: Never modify data
Ø Writers: read and modify data

! Problem constraints
Ø Using a single lock is too restrictive

  Allow multiple readers at the same time
  …but only one writer at any time

Ø Specific constraints
  Readers can access database when there are no writers
  Writers can access database when there are no readers/writers
  Only one thread can manipulate shared variables at any time

7	

Readers/Writer:	
 Solution	
 Structure	

! Basic structure: two methods

Database::Read() {
 Wait until no writers;
 Block any writers;
 Access database;
 Let in one writer or reader;
}

Database::Write() {
 Wait until no readers/writers;
 Write database;
 Let all readers/writers in;
}

8	

Solution	
 Details	

Public Database::Read() {
 dbLock.lock();
 while(writer) {
 dbAvail.wait();
 }
 reader++;
 dbLock.unlock();
 Read database;
 dbLock.lock();
 reader--;
 if(reader == 0) {
 dbAvail.singal();}
 dbLock.unlock();
}

Public Database::Write() {
 dbLock.lock();
 while(reader > 0 || writer){
 dbAvail.wait();}
 writer = true;
 dbLock.unlock();
 Write database;
 dbLock.lock();
 writer = false;
 dbAvail.signalAll();
 dbLock.unlock();
}

Lock dbLock;
Condition dbAvail;
int reader = 0;
bool writer = false;

This solution favors
1.  Readers
2.  Writers
3.  Neither, it is fair

9	

Self-­‐criticism	
 can	
 lead	
 to	
 self-­‐understanding	

! Our solution works, but it favors readers over writers.
Ø Any reader blocks all writers
Ø All readers must finish before a writer can start
Ø  Last reader will wake any writer, but a writer will wake

readers and writers (statistically which is more likely?)
Ø  If a writer exits and a reader goes next, then all readers that

are waiting will get through

! Are threads guaranteed to make progress?
Ø A. Yes B. No

10	

Readers/Writer:	
 Using	
 Monitors	

! Basic structure: two methods

! State variables

Database::Read() {
 Wait until no writers;
 Access database;
 Wake up waiting writers;
}

Database::Write() {
 Wait until no readers/writers;
 Access database;
 Wake up waiting readers/writers;
}

Class RWFairLock {
 AR = 0; // # of active readers
 AW = false; // is there an active writer
 public bool iRead;
 Condition okToRead;
 Condition okToWrite;
 LinkedList<RWFairLock> q;
 Lock lock;

11	

Solution	
 Details:	
 Readers	

Public Database::Read() {
 StartRead();
 Access database;
 DoneRead();
}

Private Database::StartRead() {
 lock.Acquire();
 iRead = true;
 q.add(this);
 while (AW || !q.peek().iRead) {

 okToRead.wait(&lock);
 }
 AR++;
 lock.Release();
}

Private Database::DoneRead() {
 lock.Acquire();
 AR--;
 q.remove(this);
 if(q.size() > 0) {
 if (q.peek().iRead == false) {

 okToWrite.notify();
 }
 }
 lock.Release();
}

Class RWFairLock {
 AR = 0; // # of active readers
 AW = false; // is there an active writer
 public bool iRead;
 Condition okToRead;
 Condition okToWrite;
 LinkedList<RWFairLock> q;
 Lock lock;

12	

Solution	
 Details:	
 Writers	

Database::Write() {
 StartWrite();
 Access database;
 DoneWrite();
}

Private Database::StartWrite() {
 lock.Acquire();
 iRead = false;
 q.add(this);
 while (AW || AR > 0
 || q.peek().isRead) {

 okToWrite.wait(&lock);
 }
 AW = true;
 lock.Release();
}

Private Database::DoneWrite() {
 lock.Acquire();
 AW = false;
 q.remove(this);
 if(q.size() > 0) {
 if (q.peek().isRead) {
 okToRead.notifyAll();
 } else {
 okToWrite.notify();
 }
 lock.Release();
}

Class RWFairLock {
 AR = 0; // # of active readers
 AW = false; // is there an active writer
 public bool iRead;
 Condition okToRead;
 Condition okToWrite;
 LinkedList<RWFairLock> q;
 Lock lock;

13	

Summary	

! Allowing concurrent reader execution is a common
concurrent programming pattern

! Naïve implementations can starve writers
! Bookkeeping to ensure fair queuing is tricky, but not

impossible
Ø A lot of effort to reason about all possible interleavings of

operations

