
1	

Memory Management Basics

	

2	

	

	

Program	

P	

Basic Memory Management Concepts
Address spaces

! Physical address space — The address space
supported by the hardware
Ø  Starting at address 0, going to address MAXsys!

! Logical/virtual address space — A process’s
view of its own memory
Ø  Starting at address 0, going to address MAXprog

0!

MAXsys!

0!

MAXprog!

MOV r0, @0xfffa620e!

But where do addresses come from?	

3	

! Which is bigger, physical or virtual address
space?
Ø A. Physical address space
Ø B. Virtual address space
Ø C. It depends on the system.

4	

Basic Concepts
Address generation

! The compilation pipeline

prog P!
 :!
 :!
 foo()!
 :!
 :!
end P!

P:!
 :!
push ...!
inc SP, x!
jmp _foo!
 :!
foo: ...	

 :!
push ...!
inc SP, 4!
jmp 75!
 :!
 ...	

0	

75	

1100	

1175	

Library	

Routines	

1000	

175	

Library	

Routines	

0	

100	

Compilation	
 Assembly	
 Linking	
 Loading	

 :!
 :!
 :!
jmp 1175!
 :!
 ...	

 :!
 :!
 :!
jmp 175!
 :!
 ...	

5	

Program Relocation

! Program issues virtual addresses
! Machine has physical addresses.
! If virtual == physical, then how can we have multiple

programs resident concurrently?
! Instead, relocate virtual addresses to physical at run

time.
Ø While we are relocating, also bounds check addresses for

safety.

! I can relocate that program (safely) in two registers…

6	

Basic Concepts (Cont’d.)
Address Translation

	

	

0!

MAXsys!

Program	

	

Program	

P’s	

logical���
address ���
space	

0	

MAXprog!

1000!

1500!
CPU +	

1000	

Base
Register

Logical
Addresses

≤	

500	

Limit
Register

MEMORY!
EXCEPTION!

Physical
Addresses

yes

no

Instructions	

P’s	

physical���
address ���
space	

7	

! With base and bounds registers, the OS needs a hole
in physical memory at least as big as the process.
Ø A. True
Ø B. False

8	

	

	

Evaluating Dynamic Allocation Techniques
The fragmentation problem

! External fragmentation
Ø  Unused memory between units of

allocation
Ø  E.g, two fixed tables for 2, but a party of 4

! Internal fragmentation
Ø  Unused memory within a unit of allocation
Ø  E.g., a party of 3 at
a table for 4 	

	

0!

MAX!

Program	

R’s PAS	

Program	

Q’s	

PAS	

Execution Stack	

Program Code���
(“text”)	

Data	

Execution Stack	

9	

	

	

	

	

	

	

Simple Memory Management Schemes
Dynamic allocation of partitions

! Simple approach:
Ø  Allocate a partition when a process is admitted

into the system
Ø  Allocate a contiguous memory partition to the

process

	

	

0!

MAX!

Program	

P2	

Program	

P3	

Program	

P1	

P5	

Program	

P4	

OS keeps track of...
Full-blocks
Empty-blocks (“holes”)

Allocation strategies

First-fit
Best-fit
Worst-fit

10	

First Fit Allocation

 To allocate n bytes, use the
first available free block such
that the block size is larger
than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 1st free block
available

2K bytes

500 bytes

11	

Rationale & Implementation

! Simplicity of implementation

! Requires:
Ø  Free block list sorted by address
Ø  Allocation requires a search for a suitable partition
Ø  De-allocation requires a check to see if the freed partition could be

merged with adjacent free partitions (if any)

Advantages
  Simple
  Tends to produce larger

free blocks toward the end
of the address space

Disadvantages
  Slow allocation
  External fragmentation

12	

Best Fit Allocation

 To allocate n bytes, use the
smallest available free block
such that the block size is
larger than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 3rd free block
available (smallest)

1K bytes

2K bytes

13	

Rationale & Implementation

! To avoid fragmenting big free blocks

! To minimize the size of external fragments produced

! Requires:
Ø  Free block list sorted by size
Ø  Allocation requires search for a suitable partition
Ø  De-allocation requires search + merge with adjacent free partitions,

if any

Advantages
  Works well when most

allocations are of small size
  Relatively simple

Disadvantages
  External fragmentation
  Slow de-allocation
  Tends to produce many

useless tiny fragments (not
really great)

! Doug Lea’s malloc “In most ways this malloc is a best-fit
allocator”

14	

Worst Fit Allocation

 To allocate n bytes, use the
largest available free block
such that the block size is
larger than n.

500 bytes

1K bytes

2K bytes

To allocate 400 bytes,
we use the 2nd free block
available (largest)

1K bytes

15	

Rationale & Implementation

! To avoid having too many tiny fragments

! Requires:
Ø  Free block list sorted by size
Ø  Allocation is fast (get the largest partition)
Ø  De-allocation requires merge with adjacent free partitions, if any,

and then adjusting the free block list

Advantages
  Works best if allocations

are of medium sizes

Disadvantages
  Slow de-allocation
  External fragmentation
  Tends to break large free

blocks such that large
partitions cannot be allocated

16	

Allocation strategies

! First fit, best fit and worst fit all suffer from
external fragmentation.
Ø A. True
Ø B. False

17	

Dynamic Allocation of Partitions
Eliminating Fragmentation

! Compaction
Ø  Relocate programs to coalesce holes

0!

MAX!

	

	

	

	

	

	

	

	

Program	

P2	

Program	

P3	

Program	

P1	

Program	

P4	

Suspended

suspended	

queue	

ready	

queue	

semaphore/condition queues	

Waiting

Running Ready

?	

!   Swapping
Ø  Preempt processes & reclaim their memory

18	

0!

2n-1!

Program���
P’s	

VAS	

Memory Management
Sharing Between Processes

! Schemes so far have considered only a single
address space per process
Ø  A single name space per process
Ø  No sharing

Program
P’s	

VAS	

	

	

Program	

Data	

	

	

Program	

Text	

Heap	

Run-Time
Stack	

How can one share code and data between
programs without paging?

19	

	

	

Multiple Name Spaces
Example — Protection/Fault isolation & sharing

0!

2n-1!

0!

2n1-1! 0!

0!

0!

2n2-1!

2n3-1!

2n4-1!

0!

2n6-1!
Libraries	

2n5-1!

0!

Program	

Data	

	

	

Program	

Text	

Heap	

	

	

Run-Time
Stack	

	

	

Program	

Text	

Program	

Data	

	

	

Run-Time
Stack	

Heap	

User
Code	

20	

Supporting Multiple Name Spaces
Segmentation

! New concept: A segment — a memory “object”
Ø  A virtual address space

! A process now addresses objects —a pair (s, addr)
Ø  s — segment number
Ø  addr — an offset within an object

 Don’t know size of object, so 32 bits for offset?

Segment + Address register scheme

s	
 addr	

Single address scheme

n1	
0	
 0	
n2	

0	

s	

n	

addr	

21	

Implementing Segmentation
Base + Limit register scheme

	

	

0!

Program	

1000!

1500!

+	

1000	
 Base
Register

Logical
Addresses

≤	

500	
Limit
Register

MEMORY!
EXCEPTION!

Physical
Memory

yes

no
P’s	

Segment	

Segment Table

s	

CPU

0	
n	
 32	
0	

s	
 o	

	

Program	

P	

base	
 limit	

STBR	

! Add a segment table containing base &
limit register values

22	

Memory Management Basics
Are We Done?

! Segmentation allows sharing

! … but leads to poor memory utilization
Ø  We might not use much of a large segment, but we must keep the

whole thing in memory (bad memory utilization).
Ø  Suffers from external fragmentation
Ø  Allocation/deallocation of arbitrary size segments is complex

! How can we improve memory management?
Ø  Paging

