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Memory Management Basics 
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Basic Memory Management Concepts 
Address spaces 

! Physical address space — The address space 
supported by the hardware 
Ø  Starting at address 0, going to address MAXsys!

! Logical/virtual address space — A process’s  
view of its own memory 
Ø  Starting at address 0, going to address MAXprog 

0!

MAXsys!

0!

MAXprog!

MOV r0, @0xfffa620e!

But where do addresses come from?	
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! Which is bigger, physical or virtual address 
space? 
Ø A. Physical address space 
Ø B. Virtual address space 
Ø C. It depends on the system. 

4	


Basic Concepts 
Address generation 

! The compilation pipeline 

prog P!
   :!
   :!
  foo()!
   :!
   :!
end P!

P:!
  :!
push ...!
inc SP, x!
jmp _foo!
  :!
foo: ...	


  :!
push ...!
inc SP, 4!
jmp 75!
  :!
  ...	
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  :!
  :!
  :!
jmp 1175!
  :!
  ...	


  :!
  :!
  :!
jmp 175!
  :!
  ...	
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Program Relocation 

! Program issues virtual addresses 
! Machine has physical addresses. 
! If virtual == physical, then how can we have multiple 

programs resident concurrently? 
! Instead, relocate virtual addresses to physical at run 

time. 
Ø While we are relocating, also bounds check addresses for 

safety. 

! I can relocate that program (safely) in two registers… 
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Basic Concepts (Cont’d.) 
Address Translation 
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! With base and bounds registers, the OS needs a hole 
in physical memory at least as big as the process. 
Ø A. True 
Ø B. False 
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Evaluating Dynamic Allocation Techniques 
The fragmentation problem 

! External fragmentation 
Ø  Unused memory between units of 

allocation 
Ø  E.g, two fixed tables for 2, but a party of 4 

! Internal fragmentation 
Ø  Unused memory within a unit of allocation 
Ø  E.g., a party of 3 at 
a table for 4 	
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Simple Memory Management Schemes 
Dynamic allocation of partitions 

! Simple approach: 
Ø  Allocate a partition when a process is admitted 

into the system 
Ø  Allocate a contiguous memory partition to the 

process 
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Allocation strategies 

First-fit 
Best-fit 
Worst-fit 
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First Fit Allocation 

    To allocate n bytes, use the 
first available free block such 
that the block size is larger 
than n.  

500 bytes 

1K bytes 

2K bytes 

To allocate 400 bytes, 
we use the 1st free block 
available 

2K bytes 

500 bytes 
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Rationale & Implementation 

! Simplicity of implementation 

! Requires: 
Ø  Free block list sorted by address 
Ø  Allocation requires a search for a suitable partition 
Ø  De-allocation requires a check to see if the freed partition could be 

merged with adjacent free partitions (if any) 

Advantages 
  Simple 
  Tends to produce larger 

free blocks toward the end 
of the address space 

Disadvantages 
  Slow allocation 
  External fragmentation 
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Best Fit Allocation 

    To allocate n bytes, use the 
smallest available free block 
such that the block size is 
larger than n.  

500 bytes 

1K bytes 

2K bytes 

To allocate 400 bytes, 
we use the 3rd free block 
available (smallest) 

1K bytes 

2K bytes 
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Rationale & Implementation 

! To avoid fragmenting big free blocks 

! To minimize the size of external fragments produced 

! Requires: 
Ø  Free block list sorted by size 
Ø  Allocation requires search for a suitable partition 
Ø  De-allocation requires search + merge with adjacent free partitions, 

if any 

Advantages 
  Works well when most 

allocations are of small size 
  Relatively simple 

Disadvantages 
  External fragmentation 
  Slow de-allocation 
  Tends to produce many 

useless tiny fragments (not 
really great) 

! Doug Lea’s malloc “In most ways this malloc is a best-fit 
allocator” 
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Worst Fit Allocation 

    To allocate n bytes, use the 
largest available free block 
such that the block size is 
larger than n.  

500 bytes 

1K bytes 

2K bytes 

To allocate 400 bytes, 
we use the 2nd free block 
available (largest) 

1K bytes 
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Rationale & Implementation 

! To avoid having too many tiny fragments 

! Requires: 
Ø  Free block list sorted by size 
Ø  Allocation is fast (get the largest partition) 
Ø  De-allocation requires merge with adjacent free partitions, if any, 

and then adjusting the free block list 

Advantages 
  Works best if allocations 

are of medium sizes 

Disadvantages 
  Slow de-allocation 
  External fragmentation 
  Tends to break large free 

blocks such that large 
partitions cannot be allocated 
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Allocation strategies   

! First fit, best fit and worst fit all suffer from 
external fragmentation. 
Ø A. True 
Ø B. False 
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Dynamic Allocation of Partitions 
Eliminating Fragmentation 

! Compaction 
Ø  Relocate programs to coalesce holes 
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!   Swapping 
Ø  Preempt processes & reclaim their memory 
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Memory Management 
Sharing Between Processes 

! Schemes so far have considered only a single 
address space per process 
Ø  A single name space per process 
Ø  No sharing  
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How can one share code and data between 
programs without paging? 
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Multiple Name Spaces 
Example — Protection/Fault isolation & sharing 
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Supporting Multiple Name Spaces 
Segmentation 

! New concept: A segment — a memory “object” 
Ø  A virtual address space 

! A process now addresses objects —a pair (s, addr) 
Ø  s — segment number 
Ø  addr — an offset within an object 

 Don’t know size of object, so 32 bits for offset? 

Segment + Address register scheme 
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Single address scheme 
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Implementing Segmentation 
Base + Limit register scheme 
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! Add a segment table containing base & 
limit register values 
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Memory Management Basics 
Are We Done? 

! Segmentation allows sharing 

! … but leads to poor memory utilization 
Ø  We might not use much of a large segment, but we must keep the 

whole thing in memory (bad memory utilization). 
Ø  Suffers from external fragmentation 
Ø  Allocation/deallocation of arbitrary size segments is complex 

! How can we improve memory management? 
Ø  Paging 


