
1	

Virtual Memory and
Address Translation	

2	

Review

! Program addresses are virtual addresses.
Ø  Relative offset of program regions can not change during program

execution. E.g., heap can not move further from code.
Ø  Virtual addresses == physical address inconvenient.

  Program location is compiled into the program.

! A single offset register allows the OS to place a process’ virtual
address space anywhere in physical memory.
Ø  Virtual address space must be smaller than physical.
Ø  Program is swapped out of old location and swapped into new.

! Segmentation creates external fragmentation and requires large
regions of contiguous physical memory.
Ø  We look to fixed sized units, memory pages, to solve the problem.

3	

Virtual Memory
Concept

! Key problem: How can one support programs that
require more memory than is physically available?
Ø  How can we support programs that do not use all of their

memory at once?

! Hide physical size of memory from users
Ø  Memory is a “large” virtual address space of 2n bytes
Ø  Only portions of VAS are in physical memory at any one

time (increase memory utilization).

! Issues
Ø  Placement strategies

  Where to place programs in physical memory
Ø  Replacement strategies

  What to do when there exist more processes than can fit in
memory

Ø  Load control strategies
  Determining how many processes can be in memory at one

time

	

	

0!

2n-1!

Program	

P’s	

VAS	

4	

	

	

Realizing Virtual Memory
Paging

! Physical memory partitioned into equal sized
page frames
Ø  Page frames avoid external fragmentation.

(0,0)!

(fMAX-1,oMAX-1)!

PA:	

f	
 o	

(f,o)!

f	

o	

Physical	

Memory	

1	
log2 omax	
log2 (fmax × omax)	

A memory address is a pair (f, o)
f — frame number (fmax frames)
o — frame offset (omax bytes/frames)
Physical address = omax×f + o

	

	

5	

0	

Physical Address Specifications
Frame/Offset pair v. An absolute index

! Example: A 16-bit address space with (omax =)
512 byte page frames
Ø  Addressing location (3, 6) = 1,542

1	
9	

PA:	

16	

(0,0)!

(3,6)!

f	

o	

	

	

	

	

Physical	

Memory	

1	
1	
1	
 0	
 1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	

3	
 6	

1,542	

10	

1,542!

0!

	

	

6	

Questions

! The offset is the same in a virtual address and a
physical address.
Ø A. True
Ø B. False

! If your level 1 data cache is equal to or smaller than
2number of page offset bits then address translation is not
necessary for indexing the data cache.
Ø A. True
Ø B. False

7	

	

	

	

	

Realizing Virtual Memory
Paging

! A process’s virtual address space is
partitioned into equal sized pages
Ø  page = page frame

(0,0)!

2n-1 =!
(pMAX-1,oMAX-1)!

p	
 o	

(p,o)!

p	

VA:	

o	

Virtual	

Address	

Space	

1	
log2 oMAX	
log2 (pmax×omax)	

A virtual address is a pair (p, o)
p — page number (pmax pages)
o — page offset (omax bytes/pages)
Virtual address = omax×p + o

	

	

8	

	

	

Paging
Mapping virtual addresses to physical addresses

! Pages map to frames
! Pages are contiguous in a VAS...

Ø  But pages are arbitrarily located
in physical memory, and

Ø  Not all pages mapped at all times
Virtual	

Address	

Space	

(p1,o1)!

	

	
(p2,o2)!

	

	

Physical	

Memory	

	

	
(f1,o1)!

	

	
(f2,o2)!

9	

Frames and pages

! Only mapping virtual pages that are in use does
what?
Ø A. Increases memory utilization.
Ø B. Increases performance for user applications.
Ø C. Allows an OS to run more programs concurrently.
Ø D. Gives the OS freedom to move virtual pages in the virtual

address space.

! Address translation and changing address mappings
are
Ø A. Frequent and frequent
Ø B. Frequent and infrequent
Ø C. Infrequent and frequent
Ø D. Infrequent and infrequent

10	

Page Table

Paging
Virtual address translation

! A page table maps virtual
pages to physical frames

CPU

	

	

	

	
(p,o)!

p	

P’s	

Virtual	

Address	

Space	

	

	

Physical	

Memory	

	

	

1	
20	
 9	
10	

p	
 o	

(f,o)!

1	
16	
 9	
10	

f	
 o	

Physical
Addresses

	

Program	

P	

Virtual
Addresses

f	

11	

Virtual Address Translation Details
Page table structure

! Contents:
Ø  Flags — dirty bit, resident bit, clock/

reference bit
Ø  Frame number

1	
0	

Page Table

p	

1	
20	
 9	
10	

p	
 o	

1	
16	
 9	
10	

f	
 o	

Physical
Addresses

Virtual
Addresses

f	
0	
PTBR	

CPU

+

1 table per process
Part of process’s state

12	

	

	

	

	

1	
1	
0	
0	
1	
0	
0	

Virtual Address Translation Details
Example

A system with 16-bit addresses
Ø  32 KB of physical memory
Ø  1024 byte pages

CPU

Page Table

Physical	

Memory	

	

	

15	

p	
 o	

(4,1023)!

14	
 9	
10	

f	
 o	

Physical
Addresses

Virtual
Addresses

0	
0	
0	
0	
0	
0	
0	

	

	

	

	

P’s	

Virtual	

Address	

Space	

	

	

(3,1023)!
(4,0)!

(0,0)!

1	

0	

0	
0	
10	
9	

13	

Virtual Address Translation
Performance Issues

! Problem — VM reference requires 2 memory references!
Ø  One access to get the page table entry
Ø  One access to get the data

! Page table can be very large; a part of the page table can be on
disk.
Ø  For a machine with 64-bit addresses and 1024 byte pages, what is

the size of a page table?

! What to do?
Ø  Most computing problems are solved by some form of…

  Caching
  Indirection

14	

Virtual Address Translation
Using TLBs to Speedup Address Translation

! Cache recently accessed page-to-frame translations in a TLB
Ø  For TLB hit, physical page number obtained in 1 cycle
Ø  For TLB miss, translation is updated in TLB
Ø  Has high hit ratio (why?)

Page Table

1	
20	
 9	
10	

p	
 o	

1	
16	
 9	
10	

f	
 o	

Physical

Addresses

Virtual
Addresses

CPU

TLB

f	

Key Value

p	

p

f	

?

X!

15	

Dealing With Large Page Tables
Multi-level paging

! Add additional levels of indirection
to the page table by sub-dividing
page number into k parts
Ø  Create a “tree” of page tables
Ø  TLB still used, just not shown
Ø  The architecture determines the

number of levels of page table

Third-Level
Page Tables

p2	
 o	

Virtual Address

First-Level
Page Table

p3	

Second-Level
Page Tables

p1	

p1	

p2	

p3	

16	

Dealing With Large Page Tables
Multi-level paging

! Example: Two-level paging

Second-Level
Page Table

1	
20	
 10	
16	

p1	
 o	

1	
16	
 10	

f	
 o	

Physical

Addresses
Virtual

Addresses

CPU

First-Level
Page Table

page table	

p2	

f	

p1	

PTBR	

p2	

+ +

Memory

17	

The Problem of Large Address Spaces

! With large address spaces (64-bits) forward mapped page tables
become cumbersome.
Ø  E.g. 5 levels of tables.

! Instead of making tables proportional to size of virtual address
space, make them proportional to the size of physical address
space.
Ø  Virtual address space is growing faster than physical.

! Use one entry for each physical page with a hash table
Ø  Translation table occupies a very small fraction of physical memory
Ø  Size of translation table is independent of VM size

! Page table has 1 entry per virtual page
! Hashed/Inverted page table has 1 entry per physical frame

18	

Virtual Address Translation
Using Page Registers (aka Hashed/Inverted Page Tables)

! Each frame is associated with a register containing
Ø  Residence bit: whether or not the frame is occupied
Ø  Occupier: page number of the page occupying frame
Ø  Protection bits

! Page registers: an example
Ø  Physical memory size: 16 MB
Ø  Page size: 4096 bytes
Ø  Number of frames: 4096
Ø  Space used for page registers (assuming 8 bytes/register): 32

Kbytes
Ø  Percentage overhead introduced by page registers: 0.2%
Ø  Size of virtual memory: irrelevant

19	

Page Registers
How does a virtual address become a physical address?

! CPU generates virtual addresses, where is the
physical page?
Ø Hash the virtual address
Ø Must deal with conflicts

! TLB caches recent translations, so page lookup can
take several steps
Ø Hash the address
Ø Check the tag of the entry
Ø Possibly rehash/traverse list of conflicting entries

! TLB is limited in size
Ø Difficult to make large and accessible in a single cycle.
Ø  They consume a lot of power (27% of on-chip for

StrongARM)

20	

Indexing Hashed Page Tables
Using Hash Tables

! Hash page numbers to find corresponding frame number
Ø  Page frame number is not explicitly stored (1 frame per entry)
Ø  Protection, dirty, used, resident bits also in entry

h(PID, p)	

1	
20	
 9	

p	
 o	

1	
16	
 9	

f	
 o	

Physical

Addresses

Virtual
Address

PTBR	

CPU

Hash	

PID	

Inverted Page Table

1	
0	
page 	

Memory

0	

fmax– 1	

fmax– 2	

running	

PID

+ 1	

=? =?
tag check

21	

Searching Hahed Page Tables
Using Hash Tables

! Page registers are placed in an array

! Page i is placed in slot f(i) where f is an agreed-upon
hash function

! To lookup page i, perform the following:
Ø Compute f(i) and use it as an index into the table of page

registers
Ø Extract the corresponding page register
Ø Check if the register tag contains i, if so, we have a hit
Ø Otherwise, we have a miss

22	

Searching Hashed Page Tables
Using Hash Tables (Cont’d.)

! Minor complication
Ø  Since the number of pages is usually larger than the number of

slots in a hash table, two or more items may hash to the same
location

! Two different entries that map to same location are said to
collide

! Many standard techniques for dealing with collisions
Ø  Use a linked list of items that hash to a particular table entry
Ø  Rehash index until the key is found or an empty table entry is

reached (open hashing)

23	

Questions

! Why use hashed/inverted page tables?
Ø A. Forward mapped page tables are too slow.
Ø B. Forward mapped page tables don’t scale to larger virtual

address spaces.
Ø C. Inverted pages tables have a simpler lookup algorithm, so

the hardware that implements them is simpler.
Ø D. Inverted page tables allow a virtual page to be anywhere

in physical memory.

24	

Virtual Memory (Paging)
The bigger picture

! A process’s VAS is its context
Ø  Contains its code, data, and stack

! Code pages are stored in a user’s file on disk
Ø  Some are currently residing in memory; most are

not

! Data and stack pages are also stored in a file
Ø  Although this file is typically not visible to users
Ø  File only exists while a program is executing

!   OS determines which portions of a process’s
VAS are mapped in memory at any one time

Code	

Data	

Stack	

File System	

(Disk)	

OS/MMU	

Physical	

Memory	

25	

	

	

Virtual Memory
Page fault handling

! References to non-mapped pages generate
a page fault

	

	

Program	

P’s	

VAS	

Disk!

CPU

Physical!
Memory!

Page!
Table!

0	

OS resumes/initiates some other process
Read of page completes

OS maps the missing page into memory
OS restart the faulting process

Page fault handling steps:
Processor runs the interrupt handler
OS blocks the running process

OS starts read of the unmapped page

26	

Virtual Memory Performance
Page fault handling analysis

! To understand the overhead of paging, compute the effective
memory access time (EAT)
Ø  EAT = memory access time × probability of a page hit +

 page fault service time × probability of a page fault

! Example:
Ø  Memory access time: 60 ns
Ø  Disk access time: 25 ms
Ø  Let p = the probability of a page fault
Ø  EAT = 60(1–p) + 25,000,000p

! To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

27	

Virtual Memory
Summary

! Physical and virtual memory partitioned into equal
size units

! Size of VAS unrelated to size of physical memory

! Virtual pages are mapped to physical frames

! Simple placement strategy

! There is no external fragmentation

! Key to good performance is minimizing page faults

28	

Segmentation vs. Paging

! Segmentation has what advantages over paging?
Ø A. Fine-grained protection.
Ø B. Easier to manage transfer of segments to/from the disk.
Ø C. Requires less hardware support
Ø D. No external fragmentation

! Paging has what advantages over segmentation?
Ø A. Fine-grained protection.
Ø B. Easier to manage transfer of pages to/from the disk.
Ø C. Requires less hardware support.
Ø D. No external fragmentation.

