

How to approach persistent storage	Different types of disks	
 Disks first, then file systems. > Bottom up. > Focus on device characteristics which dominate performance or reliability (they become focus of SW). Disk capacity (along with processor performance) are the crown jewels of computer engineering. File systems have won, but at what cost victory? > Ipod, iPhone, TivO, PDAs, laptops, desktops all have file systems. > Google is made possible by a file system. > File systems rock because they are: > Persistent. > Heirarchical (non-cyclical (mostly)). > Rich in metadata (remember cassette tapes?) > Indexible (hmmm, a weak point?) 	 Advanced Technology Attachment (ATA) Standard interface for connecting storage devices (e.g., hard drives and CD-ROM drives) Referred to as IDE (Integrated Drive Electronics), ATAPI, and UDMA. ATA standards only allow cable lengths in the range of 18 to 36 inches. CHEAP. Small Computer System Interface (SCSI) Requires controller on computer and on disk. Controller commands are sophisticated, allow reordering. USB or Firewire connections to ATA disc These are new bus technologies, not new control. Microdrive – impressively small motors 	

Different types of disks		
 Bandwidth ratings. > These are unachievable. > 50 MB/s is max off platters. > Peak rate refers to transfer from disc device's memory cache. SATA II (serial ATA) > 3 Gb/s (still only 50 MB/s off 	Mode	Speed
	UDMA0	16.7 MB/s
	UDMA1	25.0 MB/s
	UDMA2	33.3 MB/s
	UDMA3	44.4 MB/s
platter, so why do we care?) Cables are smaller and can	UDMA4	66.7 MB/s
be longer than pATA.	UDMA5	100.0 MB/s
 SCSI 320 MB/S Enables multiple drives on 	UDMA6	133 MB/s
same bus	<u>.</u>	

Disk Addressing

- Software wants a simple "disc virtual address space" consisting of a linear array of sectors.
 - Sectors numbered 1..N, each 512 bytes (typical size).
 - > Writing 8 surfaces at a time writes a 4KB page.
- Hardware has structure:
 - > Which platter?
 - > Which track within the platter?
 - > Which sector within the track?
- The hardware structure affects latency.
 - Reading from sectors in the same track is fast.
 Reading from the same cylinder group is faster than seeking.

The Impact of File Mappings File access times: Contiguous allocation
 Array elements map to contiguous sectors on disk Case1: Elements map to the middle tracks of the platter 5.6 + 3.0 + 6.0 2.048/424 = 8.6 + 29.0 = 37.6 ms Case2: Elements map to the inner tracks of the platter 5.6 + 3.0 + 6.0 2.048/212 = 8.6 + 58.0 = 66.6 ms
Case3: Elements map to the outer tracks of the platter $5.6 + 3.0 + 6.0 \frac{2.048}{636} = 8.6 + 19.3 = 27.9 \text{ ms}$

Who controls the RAID?

Hardware

- > +Tend to be reliable (hardware implementers test)
- +Offload parity computation from CPU
 Hardware is a bit faster for rewrite intensive workloads
- Dependent on card for recovery (replacements?)
- ➤ -Must buy card (for the PCI bus)
- > -Serial reconstruction of lost disk
- Software
 - -Software has bugs
 - Ties up CPU to compute parity
 - +Other OS instances might be able to recover
 - > +No additional cost
 - +Parallel reconstruction of lost disk

