
1	

File Systems:
Consistency Issues

	

	

2	

File Systems: Consistency Issues

! File systems maintain many data structures
Ø  Free list/bit vector
Ø  Directories
Ø  File headers and inode structures
Ø  Data blocks

! All data structures are cached for better performance
Ø  Works great for read operations
Ø  … but what about writes?

  If modified data is in cache, and the system crashes à all modified data
can be lost

  If data is written in wrong order, data structure invariants might be
violated (this is very bad, as data or file system might not be consistent)

Ø  Solutions:
  Write-through caches: Write changes synchronously à consistency at

the expense of poor performance
  Write-back caches: Delayed writes à higher performance but the risk of

losing data
3	

What about Multiple Updates?

! Several file system operations update multiple data structures

! Examples:
Ø  Move a file between directories

  Delete file from old directory
  Add file to new directory

Ø  Create a new file
  Allocate space on disk for file header and data
  Write new header to disk
  Add new file to a directory

! What if the system crashes in the middle?
Ø  Even with write-through, we have a problem!!

! The consistency problem: The state of memory+disk might
not be the same as just disk. Worse, just disk (without
memory) might be inconsistent.

4	

Which is a metadata consistency problem?

! A. Null double indirect pointer
! B. File created before a crash is missing
! C. Free block bitmap contains a file data

block that is pointed to by an inode
! D. Directory contains corrupt file name

5	

Consistency: Unix Approach

! Meta-data consistency
Ø Synchronous write-through for meta-data
Ø Multiple updates are performed in a specific order
Ø When crash occurs:

  Run “fsck” to scan entire disk for consistency
  Check for “in progress” operations and fix up problems
  Example: file created but not in any directory à delete file; block

allocated but not reflected in the bit map à update bit map
Ø  Issues:

  Poor performance (due to synchronous writes)
  Slow recovery from crashes

6	

Consistency: Unix Approach (Cont’d.)

! Data consistency
Ø Asynchronous write-back for user data

  Write-back forced after fixed time intervals (e.g., 30 sec.)
  Can lose data written within time interval

Ø Maintain new version of data in temporary files; replace older
version only when user commits

! What if we want multiple file operations to occur as a
unit?
Ø Example: Transfer money from one account to another à

need to update two account files as a unit
Ø Solution: Transactions

7	

Transactions

! Group actions together such that they are
Ø  Atomic: either happens or does not
Ø  Consistent: maintain system invariants
Ø  Isolated (or serializable): transactions appear to happen one after

another. Don’t see another tx in progress.
Ø  Durable: once completed, effects are persistent

! Critical sections are atomic, consistent and isolated, but not
durable

! Two more concepts:
Ø  Commit: when transaction is completed
Ø  Rollback: recover from an uncommitted transaction

8	

Implementing Transactions

! Key idea:
Ø  Turn multiple disk updates into a single disk write!

! Example:
Begin Transaction

 x = x + 1
 y = y – 1
Commit

! Sequence of steps:
Ø  Write an entry in the write-ahead log containing old and new values

of x and y, transaction ID, and commit
Ø  Write x to disk
Ø  Write y to disk
Ø  Reclaim space on the log

! In the event of a crash, either “undo” or “redo” transaction

Create a write-ahead log for
the transaction

9	

Transactions in File Systems

! Write-ahead logging à journaling file system
Ø  Write all file system changes (e.g., update directory, allocate

blocks, etc.) in a transaction log
Ø  “Create file”, “Delete file”, “Move file” --- are transactions

! Eliminates the need to “fsck” after a crash

! In the event of a crash
Ø  Read log
Ø  If log is not committed, ignore the log
Ø  If log is committed, apply all changes to disk

! Advantages:
Ø  Reliability
Ø  Group commit for write-back, also written as log

! Disadvantage:
Ø  All data is written twice!! (often, only log meta-data)

10	

Where on the disk would you put the journal for a journaling file
system?

1.  Anywhere
2.  Outer rim
3.  Inner rim
4.  Middle
5.  Wherever the inodes are

11	

Transactions in File Systems: A more complete way

! Log-structured file systems
Ø  Write data only once by having the log be the only copy of data and

meta-data on disk

! Challenge:
Ø  How do we find data and meta-data in log?

  Data blocks à no problem due to index blocks
  Meta-data blocks à need to maintain an index of meta-data blocks

also! This should fit in memory.

! Benefits:
Ø  All writes are sequential; improvement in write performance is

important (why?)

! Disadvantage:
Ø  Requires garbage collection from logs (segment cleaning)

12	

File System: Putting it All Together

! Kernel data structures: file open table
Ø  Open(“path”) à put a pointer to the file in FD table; return index
Ø  Close(fd) à drop the entry from the FD table
Ø  Read(fd, buffer, length) and Write(fd, buffer, length) à refer to the

open files using the file descriptor

! What do you need to support read/write?
Ø  Inode number (i.e., a pointer to the file header)
Ø  Per-open-file data (e.g., file position, …)

13	

Putting It All Together (Cont’d.)

! Read with caching:
ReadDiskCache(blocknum, buffer) {

 ptr = cache.get(blocknum) // see if the block is in cache
 if (ptr)
 Copy blksize bytes from the ptr to user buffer
 else {
 newOSBuf = malloc(blksize);
 ReadDisk(blocknum, newOSBuf);

 cache.insert(blockNum, newOSBuf);
 Copy blksize bytes from the newOSBuf to user buffer
 }

! Simple but require block copy on every read

! Eliminate copy overhead with mmap.
Ø  Map open file into a region of the virtual address space of a process
Ø  Access file content using load/store
Ø  If content not in memory, page fault

14	

Putting It All Together (Cont’d.)

! Eliminate copy overhead with mmap.
Ø  mmap(ptr, size, protection, flags, file descriptor, offset)
Ø  munmap(ptr, length)

Virtual address space	

Refers to contents of mapped file	

! void* ptr = mmap(0, 4096, PROT_READ|PROT_WRITE,
MAP_SHARED, 3, 0);

! int foo = *(int*)ptr;
! foo contains first 4 bytes of the file referred to by file descriptor 3.

