
1	

Protection and Security
	

How to be a paranoid	

or just think like one	

	

	

2	
 3	

Leaking information

! Stealing 26.5 million veteran’s data
! Data on laptop stolen from employee’s home (5/06)

Ø Veterans’ names
Ø Social Security numbers
Ø Dates of birth

! Exposure to identity theft

! CardSystems exposes data of 40 million cards (2005)
Ø Data on 70,000 cards downloaded from ftp server

These are attacks on privacy (confidentiality, anonymity)	

4	

The Sony rootkit

! “Protected” albums included
Ø Billie Holiday
Ø  Louis Armstrong
Ø Switchfoot
Ø  The Dead 60’s
Ø  Flatt & Scruggs, etc.

! Rootkits modify files to infiltrate & hide
Ø System configuration files
Ø Drivers (executable files)

5	

The Sony rootkit

! Sony’s rootkit enforced DRM but exposed computer
Ø CDs recalled
Ø Classified as spyware by anti-virus software
Ø Rootkit removal software distrubuted
Ø Removal software had exposure vulnerability
Ø New removal software distrubuted

! Sony sued by
Ø  Texas
Ø New York
Ø California

This is an attack on integrity	

6	

The Problem

! Types of misuse
Ø Accidental
Ø  Intentional (malicious)

! Protection and security objective
Ø Protect against/prevent misuse

! Three key components:
Ø Authentication: Verify user identity
Ø  Integrity: Data has not been written by unauthorized entity
Ø Privacy: Data has not been read by unauthorized entity

7	

Have you used an anonymizing service?

1.  Yes, for email
2.  Yes, for web browsing
3.  Yes, for something else
4.  No

8	

What are your security goals?

! Authentication
Ø User is who s/he says they are.
Ø Example: Certificate authority (verisign)

! Integrity
Ø Adversary can not change contents of message
Ø But not necessarily private (public key)
Ø Example: secure checksum

! Privacy (confidentiality)
Ø Adversary can not read your message
Ø  If adversary eventually breaks your system can they decode

all stored communication?
Ø Example: Anonymous remailer (how to reply?)

! Authorization, repudiation (or non-repudiation),
forward security (crack now, not crack future),
backward security (crack now, not cracked past)

9	

What About Security in Distributed Systems?

! Three challenges
Ø  Authentication

  Verify user identity
Ø  Integrity

  Verify that the communication has not been tempered with
Ø  Privacy

  Protect access to communication across hosts

! Solution: Encryption
Ø  Achieves all these goals
Ø  Transform data that can easily reversed given the correct key (and

hard to reverse without the key)

! Two common approaches
Ø  Private key encryption
Ø  Public key encryption

! Cryptographic hash
Ø  Hash is a fixed sized byte string which represents arbitrary length

data. Hard to find two messages with same hash.
Ø  If m != m’ then H(m) != H(m’) with high probability. H(m) is 256

bits

10	

Private Key (Symmetric Key) Encryption

! Basic idea:
Ø  {Plain text}^K à cipher text
Ø  {Cipher text}^K à plain text
Ø  As long as key K stays secret, we get authentication, secrecy and

integrity
! Infrastructure: Authentication server (example: kerberos)

Ø  Maintains a list of passwords; provides a key for two parties to
communicate

! Basic steps (using secure server S)
Ø  A à S {Hi! I would like a key for AB}
Ø  S à A {Use Kab {This is A! Use Kab}^Kb}^Ka
Ø  Aà B {This is A! Use Kab}^Kb
Ø  Master keys (Ka and Kb) distributed out-of-band and stored

securely at clients (the bootstrap problem)
! Refinements

Ø  Generate temporary keys to communicate between clients and
authentication server

11	

Public Key Encryption

! Basic idea:
Ø  Separate authentication from secrecy
Ø  Each key is a pair: K-public and K-private
Ø  {Plain text}^K-private à cipher text
Ø  {Cipher text}^K-public à plain text
Ø  K-private is kept a secret; K-public is distributed

! Examples:
Ø  {I’m Don}^K-private

  Everyone can read it, but only I can send it (authentication)
Ø  {Hi, Don}^K-public

  Anyone can send it but only I can read it (secrecy)

! Two-party communication
Ø  A à B {I’m A {use Kab}^K-privateA}^K-publicB
Ø  No need for an authentication server
Ø  Question: how do you trust the “public key” server?

  Trusted server: {K-publicA}^K-privateS

12	

Implementing your security goals

! Authentication
Ø  {I’m Don}^K-private

! Integrity
Ø  {SHA-256 hash of message I just send is …}^K-private

! Privacy (confidentiality)
Ø Public keys to exchange a secret
Ø Use shared-key cryptography (for speed)
Ø Strategy used by ssh

! Forward/backward security
Ø Rotate shared keys every hour

! Repudiation
Ø Public list of cracked keys

13	

When you log into a website using an http URL, which
property are you missing?

1.  Authentication
2.  Integrity
3.  Privacy
4.  Authorization
5.  None

14	

Securing HTTP: HTTPS (HTTP+SSL/TLS)

client	
 server	
 CA	

hello(client)	

certificate	

certificate ok?	

switch to encrypted	

connection using shared key	

{send random shared key}^S-public	

{certificate valid}^CA-private	

15	

When you visit a website using an https URL, which
property are you missing?

1.  Authentication (server to user)
2.  Authentication (user to server)
3.  Integrity
4.  Privacy
5.  None

16	

Authentication

! Objective: Verify user identity

! Common approach:
Ø  Passwords: shared secret between two parties
Ø  Present password to verify identity

1.  How can the system maintain a copy of passwords?
Ø  Encryption: Transformation that is difficult to reverse without

right key
Ø  Example: Unix /etc/passwd file contains encrypted

passwords
Ø  When you type password, system encrypts it and then

compared encrypted versions

17	

Authentication (Cont’d.)

2.  Passwords must be long and obscure
Ø  Paradox:

v  Short passwords are easy to crack
v  Long passwords – users write down to remember è

vulnerable
Ø  Original Unix:

v  5 letter, lower case password
v  Exhaustive search requires 26^5 = 12 million comparisons
v  Today: < 1us to compare a password è 12 seconds to

crack a password
Ø  Choice of passwords

v  English words: Shakespeare’s vocabulary: 30K words
v  All English words, fictional characters, place names, words

reversed, … still too few words
v  (Partial) solution: More complex passwords

Ø  At least 8 characters long, with upper/lower case, numbers,
and special characters

18	

Are Long Passwords Sufficient?

! Example: Tenex system (1970s – BBN)
Ø  Considered to be a very secure system
Ø  Code for password check:

Ø  Looks innocuous – need to try 256^8 (= 1.8E+19)
combinations to crack a password

Ø  Is this good enough??

For (i=0, i<8, i++) {
 if (userPasswd[i] != realPasswd[i])
 Report Error;

}

No!!!

19	

Are Long Passwords Sufficient? (Cont’d.)

! Problem:
Ø  Can exploit the interaction with virtual memory to crack passwords!

! Key idea:
Ø  Force page faults at carefully designed times to reveal password
Ø  Approach

  Arrange first character in string to be the last character in a page
  Arrange that the page with the first character is in memory
  Rest is on disk (e.g., a|bcdefgh)
  Check how long does a password check take?

  If fast è first character is wrong
  If slow è first character is right à page fault à one of the later character is

wrong
  Try all first characters until the password check takes long
  Repeat with two characters in memory, …

Ø  Number of checks required = 256 * 8 = 2048 !!
! Fix:

Ø  Don’t report error until you have checked all characters!
Ø  But, how do you figure this out in advance??
Ø  Timing bugs are REALLY hard to avoid

20	

Alternatives/enhancements to Passwords

! Easier to remember passwords (visual recognition)
! Two-factor authentication

Ø Password and some other channel, e.g., physical device
with key that changes every minute

Ø  http://www.schneier.com/essay-083.html
Ø What about a fake bank web site? (man in the middle)
Ø  Local Trojan program records second factor

! Biometrics
Ø  Fingerprint, retinal scan
Ø What if I have a cut? What if someone wants my finger?

! Facial recognition

21	

Password security

1.  Brute force password guessing for all accounts.
2.  Brute force password guessing for one account.
3.  Trojan horse password value
4.  Man-in-the-middle attack when user gives

password at login prompt.

§  Instead of hashing your password, I will hash your
password concatenated with a random salt. Then I
store the unhashed salt along with the hash.
§  (password . salt)^H salt

§  What attack does this address?

22	

Authorization

! Objective:
Ø Specify access rights: who can do what?

! Access control: formalize all permissions in the
system

! Problem:

Ø Potentially huge number of users, objects that dynamically
change è impractical

! Access control lists
Ø  Store permissions for all users with objects
Ø  Unix approach: three categories of access rights (owner, group,

world)
Ø  Recent systems: more flexible with respect to group creation

! Privileged user (becomes security hole)
Ø Administrator in windows, root in Unix
Ø Principle of least privlege

File1 File2 File3 …

User A RW R -- …

User B -- RW RW ..

User C RW RW RW …

23	

Authorization

! Capability lists (a capability is like a ticket)
Ø Each process stores information about objects it has

permission to touch
Ø Processes present capability to objects to access (e.g., file

descriptor)
Ø  Lots of capability-based systems built in the past but idea

out of favor today

24	

Enforcement

! Objectives:
Ø  Check password, enforce access control

! General approach
Ø  Separation between “user” mode and “privileged” mode

! In Unix:
Ø  When you login, you authenticate to the system by providing

password
Ø  Once authenticated – create a shell for specific userID
Ø  All system calls pass userID to the kernel
Ø  Kernel checks and enforces authorization constraints

! Paradox
Ø  Any bug in the enforcer è you are hosed!
Ø  Make enforcer as small and simple as possible

  Called the trusted computing base.
  Easier to debug, but simple-minded protection (run a lot of services in

privileged mode)
Ø  Support complex protection schemes

  Hard to get it right!

25	

Joe Nolife develops a file system that responds to
requests with digitally signed packets of data from a
content provider. Any untrusted machine can serve
the data and clients can verify that the packets they
receive were signed. So stonybrook.edu can give
signed copies of the read-only portions of its web site
to untrusted servers. Joe’s FS provides which
property?

1.  Authentication of file system users
2.  Integrity of file system contents
3.  Privacy of file system data & metadata
4.  Authorization of access to data & metadata

26	

Summary

! Security in distributed system is essential

! .. And is hard to achieve!

