
Process Address Spaces
and

Binary Formats
Don Porter – CSE 306

Background

ò  We’ve talked some about processes

ò  This lecture: discuss overall virtual memory organization

ò  Key abstraction: Address space

ò  We will learn about the mechanics of virtual memory
later

Definitions (can vary)

ò  Process is a virtual address space

ò  1+ threads of execution work within this address space

ò  A process is composed of:

ò  Memory-mapped files

ò  Includes program binary

ò  Anonymous pages: no file backing

ò  When the process exits, their contents go away

Address Space Layout

ò  Determined (mostly) by the application

ò  Determined at compile time

ò  Link directives can influence this

ò  OS usually reserves part of the address space to map
itself

ò  Upper GB on x86 Linux

ò  Application can dynamically request new mappings from
the OS, or delete mappings

Simple Example

Virtual Address Space

0 0xffffffff

hello libc.so heap

ò  “Hello world” binary specified load address

ò  Also specifies where it wants libc

ò  Dynamically asks kernel for “anonymous” pages for its
heap and stack

stk

In practice

ò  You can see (part of) the requested memory layout of a program
using ldd:

$ ldd /usr/bin/git

 linux-vdso.so.1 => (0x00007fff197be000)

 libz.so.1 => /lib/libz.so.1 (0x00007f31b9d4e000)

 libpthread.so.0 => /lib/libpthread.so.0
 (0x00007f31b9b31000)

 libc.so.6 => /lib/libc.so.6 (0x00007f31b97ac000)

 /lib64/ld-linux-x86-64.so.2 (0x00007f31b9f86000)

Many address spaces

ò  What if every program wants to map libc at the same
address?

ò  No problem!

ò  Every process has the abstraction of its own address space

ò  How does this work?

Memory Mapping

Physical Memory

Process 1

Virtual Memory
// Program expects (*x) !
// to always be at !
// address 0x1000!
int *x = 0x1000; !

0x1000

Only one
physical address

0x1000!!

Process 2

Virtual Memory
0x1000 0x1000

Two System Goals

1)  Provide an abstraction of contiguous, isolated virtual
memory to a program

ò  We will study the details of virtual memory later

2) Prevent illegal operations

ò  Prevent access to other application

ò  No way to address another application’s memory

ò  Detect failures early (e.g., segfault on address 0)

What about the kernel?

ò  Most OSes reserve part of the address space in every
process by convention

ò  Other ways to do this, nothing mandated by hardware

Example Redux

Virtual Address Space

0 0xffffffff

hello libc.so heap

ò  Kernel always at the “top” of the address space

ò  “Hello world” binary specifies most of the memory map

ò  Dynamically asks kernel for “anonymous” pages for its heap
and stack

stk Linux

Why a fixed mapping?

ò  Makes the kernel-internal bookkeeping simpler

ò  Example: Remember how interrupt handlers are
organized in a big table?

ò  How does the table refer to these handlers?

ò  By (virtual) address

ò  Awfully nice when one table works in every process

Kernel protection?

ò  So, I protect programs from each other by running in
different virtual address spaces

ò  But the kernel is in every virtual address space?

Protection rings

ò  Intel’s hardware-level permission model

ò  Ring 0 (supervisor mode) – can issue any instruction

ò  Ring 3 (user mode) – no privileged instructions

ò  Rings 1&2 – mostly unused, some subset of privilege

ò  Note: this is not the same thing as superuser or administrator
in the OS

ò  Similar idea

ò  Key intuition: Memory mappings include a ring level and read
only/read-write permission

ò  Ring 3 mapping – user + kernel, ring 0 – only kernel

Putting protection together

ò  Permissions on the memory map protect against
programs:

ò  Randomly reading secret data (like cached file contents)

ò  Writing into kernel data structures

ò  The only way to access protected data is to trap into the
kernel. How?

ò  Interrupt (or syscall instruction)

ò  Interrupt table entries (aka gates) protect against jumping
right into unexpected functions

Outline

ò  Basics of process address spaces

ò  Kernel mapping

ò  Protection

ò  How to dynamically change your address space?

ò  Overview of loading a program

Linux APIs

ò  mmap(void *addr, size_t length, int prot, int flags, int fd,
 off_t offset);

ò  munmap(void *addr, size_t length);

ò  How to create an anonymous mapping?

ò  What if you don’t care where a memory region goes (as
long as it doesn’t clobber something else)?

Idiosyncrasy 1: Stacks
Grow Down

ò  In Linux/Unix, as you add frames to a stack, they
actually decrease in virtual address order

ò  Example:
main()

foo()

bar()

Stack “bottom” – 0x13000

0x12600

0x12300

0x11900

Exceeds stack
page OS allocates

a new page

Problem 1: Expansion

ò  Recall: OS is free to allocate any free page in the virtual
address space if user doesn’t specify an address

ò  What if the OS allocates the page below the “top” of the
stack?

ò  You can’t grow the stack any further

ò  Out of memory fault with plenty of memory spare

ò  OS must reserve stack portion of address space

ò  Fortunate that memory areas are demand paged

ò  Unix has been around longer than paging

ò  Data segment abstraction (we’ll see more about segments later)

ò  Unix solution:

ò  Stack and heap meet in the middle

ò  Out of memory when they meet

Heap Stack

Feed 2 Birds with 1 Scone

Data Segment

Grows Grows

ò  Brk points to the end of the heap

ò  sys_brk() changes this pointer

 Heap Stack

brk() system call

Data Segment

Grows Grows

Relationship to malloc()

ò  malloc, or any other memory allocator (e.g., new)

ò  Library (usually libc) inside application

ò  Takes in gets large chunks of anonymous memory from
the OS

ò  Some use brk,

ò  Many use mmap instead (better for parallel allocation)

ò  Sub-divides into smaller pieces

ò  Many malloc calls for each mmap call

Outline

ò  Basics of process address spaces

ò  Kernel mapping

ò  Protection

ò  How to dynamically change your address space?

ò  Overview of loading a program

Linux: ELF

ò  Executable and Linkable Format

ò  Standard on most Unix systems

ò  2 headers:

ò  Program header: 0+ segments (memory layout)

ò  Section header: 0+ sections (linking information)

Helpful tools

ò  readelf - Linux tool that prints part of the elf headers

ò  objdump – Linux tool that dumps portions of a binary

ò  Includes a disassembler; reads debugging symbols if
present

Key ELF Segments

ò  Not the same thing as hardware segmentation

ò  .text – Where read/execute code goes

ò  Can be mapped without write permission

ò  .data – Programmer initialized read/write data

ò  Ex: a global int that starts at 3 goes here

ò  .bss – Uninitialized data (initially zero by convention)

ò  Many other segments

Sections

ò  Also describe text, data, and bss segments

ò  Plus:

ò  Procedure Linkage Table (PLT) – jump table for libraries

ò  .rel.text – Relocation table for external targets

ò  .symtab – Program symbols

How ELF Loading Works

ò  execve(“foo”, …)

ò  Kernel parses the file enough to identify whether it is a
supported format

ò  Kernel loads the text, data, and bss sections

ò  ELF header also gives first instruction to execute

ò  Kernel transfers control to this application instruction

Static vs. Dynamic
Linking

ò  Static Linking:

ò  Application binary is self-contained

ò  Dynamic Linking:

ò  Application needs code and/or variables from an external
library

ò  How does dynamic linking work?

ò  Each binary includes a “jump table” for external
references

ò  Jump table is filled in at run time by the linker

Jump table example

ò  Suppose I want to call foo() in another library

ò  Compiler allocates an entry in the jump table for foo

ò  Say it is index 3, and an entry is 8 bytes

ò  Compiler generates local code like this:

ò  mov rax, 24(rbx) // rbx points to the
 // jump table

ò  call *rax
ò  Linker initializes the jump tables at runtime

Dynamic Linking
(Overview)

ò  Rather than loading the application, load the linker
(ld.so), give the linker the actual program as an argument

ò  Kernel transfers control to linker (in user space)

ò  Linker:

ò  1) Walks the program’s ELF headers to identify needed
libraries

ò  2) Issue mmap() calls to map in said libraries

ò  3) Fix the jump tables in each binary

ò  4) Call main()

Key point

ò  Most program loading work is done by the loader in user
space

ò  If you ‘strace’ any substantial program, there will be
beaucoup mmap calls early on

ò  Nice design point: the kernel only does very basic loading,
ld.so does the rest

ò  Minimizes risk of a bug in complicated ELF parsing
corrupting the kernel

Other formats?

ò  The first two bytes of a file are a “magic number

ò  Kernel reads these and decides what loader to invoke

ò  ‘#!’ says “I’m a script”, followed by the “loader” for that
script

ò  The loader itself may be an ELF binary

ò  Linux allows you to register new binary types (as long as
you have a supported binary format that can load them

Recap

ò  Understand the idea of an address space

ò  Understand how a process sets up its address space, how
it is dynamically changed

ò  Understand the basics of program loading

