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Background 

ò  We’ve talked some about processes  

ò  This lecture: discuss overall virtual memory organization 

ò  Key abstraction: Address space 

ò  We will learn about the mechanics of  virtual memory 
later 



Definitions (can vary) 

ò  Process is a virtual address space 

ò  1+ threads of  execution work within this address space 

ò  A process is composed of: 

ò  Memory-mapped files 

ò  Includes program binary 

ò  Anonymous pages: no file backing 

ò  When the process exits, their contents go away 



Address Space Layout 

ò  Determined (mostly) by the application 

ò  Determined at compile time 

ò  Link directives can influence this  

ò  OS usually reserves part of  the address space to map 
itself   

ò  Upper GB on x86 Linux 

ò  Application can dynamically request new mappings from 
the OS, or delete mappings 



Simple Example 

Virtual Address Space 

0 0xffffffff  

hello libc.so heap 

ò  “Hello world” binary specified load address 

ò  Also specifies where it wants libc 

ò  Dynamically asks kernel for “anonymous” pages for its 
heap and stack 

stk 



In practice 

ò  You can see (part of) the requested memory layout of  a program 
using ldd: 

$ ldd /usr/bin/git 

 linux-vdso.so.1 =>  (0x00007fff197be000) 

 libz.so.1 => /lib/libz.so.1 (0x00007f31b9d4e000) 

 libpthread.so.0 => /lib/libpthread.so.0       
                             (0x00007f31b9b31000) 

 libc.so.6 => /lib/libc.so.6 (0x00007f31b97ac000) 

 /lib64/ld-linux-x86-64.so.2 (0x00007f31b9f86000) 

 



Many address spaces 

ò  What if  every program wants to map libc at the same 
address? 

ò  No problem! 

ò  Every process has the abstraction of  its own address space 

ò  How does this work? 



Memory Mapping 

Physical Memory 

Process 1 

Virtual Memory 
// Program expects (*x) !
//  to always be at !
//  address 0x1000!
int *x = 0x1000; !

0x1000 

Only one 
physical address 

0x1000!! 

Process 2 

Virtual Memory 
0x1000 0x1000 



Two System Goals 

1)  Provide an abstraction of  contiguous, isolated virtual 
memory to a program 

ò  We will study the details of  virtual memory later 

2) Prevent illegal operations  

ò  Prevent access to other application 

ò  No way to address another application’s memory 

ò  Detect failures early (e.g., segfault on address 0) 



What about the kernel? 

ò  Most OSes reserve part of  the address space in every 
process by convention 

ò  Other ways to do this, nothing mandated by hardware 



Example Redux 

Virtual Address Space 

0 0xffffffff  

hello libc.so heap 

ò  Kernel always at the “top” of  the address space 

ò  “Hello world” binary specifies most of  the memory map 

ò  Dynamically asks kernel for “anonymous” pages for its heap 
and stack 

stk Linux 



Why a fixed mapping? 

ò  Makes the kernel-internal bookkeeping simpler 

ò  Example: Remember how interrupt handlers are 
organized in a big table? 

ò  How does the table refer to these handlers?   

ò  By (virtual) address 

ò  Awfully nice when one table works in every process 



Kernel protection? 

ò  So, I protect programs from each other by running in 
different virtual address spaces 

ò  But the kernel is in every virtual address space? 



Protection rings 

ò  Intel’s hardware-level permission model 

ò  Ring 0 (supervisor mode) – can issue any instruction 

ò  Ring 3 (user mode) – no privileged instructions 

ò  Rings 1&2 – mostly unused, some subset of  privilege 

ò  Note: this is not the same thing as superuser or administrator 
in the OS 

ò  Similar idea 

ò  Key intuition: Memory mappings include a ring level and read 
only/read-write permission 

ò  Ring 3 mapping – user + kernel, ring 0 – only kernel 



Putting protection together 

ò  Permissions on the memory map protect against 
programs: 

ò  Randomly reading secret data (like cached file contents) 

ò  Writing into kernel data structures 

ò  The only way to access protected data is to trap into the 
kernel.   How? 

ò  Interrupt (or syscall instruction) 

ò  Interrupt table entries (aka gates) protect against jumping 
right into unexpected functions 



Outline 

ò  Basics of  process address spaces 

ò  Kernel mapping 

ò  Protection 

ò  How to dynamically change your address space? 

ò  Overview of  loading a program 



Linux APIs 

ò  mmap(void *addr, size_t length, int prot, int flags, int fd,  
       off_t offset); 

ò  munmap(void *addr, size_t length); 

ò  How to create an anonymous mapping? 

ò  What if  you don’t care where a memory region goes (as 
long as it doesn’t clobber something else)? 



Idiosyncrasy 1: Stacks 
Grow Down 

ò  In Linux/Unix, as you add frames to a stack, they 
actually decrease in virtual address order 

ò  Example: 
main() 

foo() 

bar() 

Stack “bottom” – 0x13000 

0x12600 

0x12300 

0x11900 

Exceeds stack 
page OS allocates 

a new page 



Problem 1: Expansion 

ò  Recall: OS is free to allocate any free page in the virtual 
address space if  user doesn’t specify an address 

ò  What if  the OS allocates the page below the “top” of  the 
stack? 

ò  You can’t grow the stack any further 

ò  Out of  memory fault with plenty of  memory spare 

ò  OS must reserve stack portion of  address space 

ò  Fortunate that memory areas are demand paged 



ò  Unix has been around longer than paging 

ò  Data segment abstraction (we’ll see more about segments later) 

ò  Unix solution: 

 

ò  Stack and heap meet in the middle 

ò  Out of  memory when they meet 

Heap Stack 

Feed 2 Birds with 1 Scone 

Data Segment 

Grows Grows 



ò  Brk points to the end of  the heap 

ò  sys_brk() changes this pointer 

 Heap Stack 

brk() system call 

Data Segment 

Grows Grows 



Relationship to malloc() 

ò  malloc, or any other memory allocator (e.g., new) 

ò  Library (usually libc) inside application 

ò  Takes in gets large chunks of  anonymous memory from 
the OS 

ò  Some use brk,  

ò  Many use mmap instead (better for parallel allocation) 

ò  Sub-divides into smaller pieces 

ò  Many malloc calls for each mmap call 



Outline 

ò  Basics of  process address spaces 

ò  Kernel mapping 

ò  Protection 

ò  How to dynamically change your address space? 

ò  Overview of  loading a program 



Linux: ELF 

ò  Executable and Linkable Format 

ò  Standard on most Unix systems 

ò  2 headers: 

ò  Program header: 0+ segments (memory layout) 

ò  Section header: 0+ sections (linking information) 



Helpful tools 

ò  readelf   - Linux tool that prints part of  the elf  headers 

ò  objdump – Linux tool that dumps portions of  a binary 

ò  Includes a disassembler; reads debugging symbols if  
present 



Key ELF Segments 

ò  Not the same thing as hardware segmentation 

ò  .text – Where read/execute code goes 

ò  Can be mapped without write permission 

ò  .data – Programmer initialized read/write data 

ò  Ex: a global int that starts at 3 goes here 

ò  .bss – Uninitialized data (initially zero by convention) 

ò  Many other segments 



Sections 

ò  Also describe text, data, and bss segments 

ò  Plus: 

ò  Procedure Linkage Table (PLT) – jump table for libraries 

ò  .rel.text – Relocation table for external targets 

ò  .symtab – Program symbols 



How ELF Loading Works 

ò  execve(“foo”, …) 

ò  Kernel parses the file enough to identify whether it is a 
supported format 

ò  Kernel loads the text, data, and bss sections 

ò  ELF header also gives first instruction to execute 

ò  Kernel transfers control to this application instruction 



Static vs. Dynamic 
Linking 

ò  Static Linking: 

ò  Application binary is self-contained 

ò  Dynamic Linking: 

ò  Application needs code and/or variables from an external 
library 

ò  How does dynamic linking work? 

ò  Each binary includes a “jump table” for external 
references 

ò  Jump table is filled in at run time by the linker 



Jump table example 

ò  Suppose I want to call foo() in another library 

ò  Compiler allocates an entry in the jump table for foo 

ò  Say it is index 3, and an entry is 8 bytes 

ò  Compiler generates local code like this: 

ò  mov rax, 24(rbx) // rbx points to the  
        // jump table 

ò  call *rax 
ò  Linker initializes the jump tables at runtime 



Dynamic Linking 
(Overview) 

ò  Rather than loading the application, load the linker 
(ld.so), give the linker the actual program as an argument 

ò  Kernel transfers control to linker (in user space) 

ò  Linker: 

ò  1) Walks the program’s ELF headers to identify needed 
libraries 

ò  2) Issue mmap() calls to map in said libraries 

ò  3) Fix the jump tables in each binary 

ò  4) Call main() 



Key point 

ò  Most program loading work is done by the loader in user 
space 

ò  If  you ‘strace’ any substantial program, there will be 
beaucoup mmap calls early on 

ò  Nice design point: the kernel only does very basic loading, 
ld.so does the rest 

ò  Minimizes risk of  a bug in complicated ELF parsing 
corrupting the kernel 



Other formats? 

ò  The first two bytes of  a file are a “magic number 

ò  Kernel reads these and decides what loader to invoke 

ò  ‘#!’ says “I’m a script”, followed by the “loader” for that 
script 

ò  The loader itself  may be an ELF binary 

ò  Linux allows you to register new binary types (as long as 
you have a supported binary format that can load them 



Recap 

ò  Understand the idea of  an address space 

ò  Understand how a process sets up its address space, how 
it is dynamically changed 

ò  Understand the basics of  program loading 


