Operating Systems:
Basic Concepts and History

Don Porter
Portions courtesy Emmett Witchel

Introduction to Operating Systems

What is an Operating System?

+ An operating system is the interface between the user and the
architecture.

User Applications

T T Application Programming

Interface (APT.
Operating System erface (APT)

Physical Machine Interface

Hardware

+ OS as juggler: providing the illusion of a dedicated machine with
infinite memory and CPU.

+ OS as government: protecting users from each other, allocating
resources efficiently and fairly, and providing secure and safe
communication

+ OS as complex system: keeping OS design and implementation
as simple as possible is the key to getting the OS to work

+ Any code that runs with the hardware kernel bit set
> An abstract virtual machine
> A set of abstractions that simplify application design
« Files instead of “bytes on a disk”
+ Core OS services, written by “pros”
Processes, process scheduling
Address spaces
Device control
~30% of Linux source code. Basis of stability and security
+ Device drivers written by “whoever”
>

Software run in kernel to manages a particular vendor’ s
hardware

+ E.g. Homer Simpson doll with USB
» ~70% of Linux source code
> OS is extensible
» Drivers are the biggest source of OS instability

Y VYV V

What is an Operating System?

+ For any OS area (CPU scheduling, file systems,
memory management), begin by asking two
questions

> What' s the hardware interface? (The Physical Reality)

» What is the application interface? (The Nicer Interface for
programmer producivity)

+ Key questions:
» Why is the application interface defined the way it is?
» Should we push more functionality into applications, the OS,
or the hardware?
» What are the tradeoffs between programmability, complexity,
and flexibility?

Operating System Functions

Why do we need operating systems?

+ Service provider
> Provide standard facilities
+ File system
< Standard libraries
Window system

+ Coordinator. three aspects
» Protection: prevent jobs from interfering with each other
» Communication: enable jobs to interact with each other
» Resource management: facilitate sharing of resources across jobs.

+ Operating systems are everywhere
» Single-function devices (embedded controllers, Nintendo, ...)
= OS provides a collection of standard services
<+ Sometimes OS/middleware distinction is blurry
» Multi-function/application devices (workstations and servers)
<+ OS manages application interactions

+ Convenience
» Provide a high-level abstraction of physical resources.
< Make hardware usable by getting rid of warts & specifics.
» Enable the construction of more complex software systems
> Enable portable code.
« MS-DOS version 1 boots on the latest Intel Core.
< Would games that ran on MS-DOSv1 work well today?

+ Efficiency
» Share limited or expensive physical resources.
» Provide protection.

Computer Architecture & Processes

aisk) (“disk tape drive
printer e

Disk . Tape Drive
Contmoller || Controller || Controler

System Bes

Memmosy Controler

Mermory

+ CPU - the processor that performs the actual computation

+ I/0 devices - terminal, disks, video board, printer, etc.

+ Memory - RAM containing data and programs used by the
CPU

+ System bus - the communication medium between the CPU,
memory, and peripherals

Evolution? Evolution of Operating Systems
+ Why do operating systems change?
> Key functions: hardware abstraction and coordination
» Principle: Design tradeoffs change as technology changes.
o~ ;-;-;y/ * What does this book cover + Comparing computing systems from 1981 and 2007
F o\ imply to you?

OPERATING
RR™,

e d

¥y)

(Y

| Siberschy, alin agae. ..
r

+ Do OSes evolve? How?
» New hardware
< Multi-core, GPUs,
power management
» New applications
+Cloud, mobile apps,
games, VolP

1981 2007 Factor
MIPS 1 57,000 57,000
$/SPECInt $100K $2 50,000
DRAM size 128KB 26B 16,000
Disk size 10MB 1B 100,000
+ Entrgyrelfierency and rsgelalisen oasoomEle hariadtoo
+ | Data centers conqume ~3% of |US energy
+ [Nadreze sirgle-corgeCPUs |64 4

frorg Architecture to OS to Application, and
Bac

Hardware Example OS Services User Abstraction
Processor Process management, Process
Scheduling, Traps,
Protections, Billing,
Synchronization
Memory Management, Protection, Address space

Virtual memory

1/0 devices Concurrency with CPU,
Interrupt handling

Terminal, Mouse,
Printer, (System
Calls)

rom Architectural to OS to Application, and .
-Z; ack PP ™ Interrupts - Moving from Kernel to User Mode
User processes may not:
0S Service Hardware Support + address /O directly 08 Kernel
Protection Kol / User modo + use instructions that “Trap Handler - System Service Routine
Protected Instructions manipulate OS memory Trap to Kemel Mode Kernel Mode
o : (e.g., page tables) } ;
Base and Limit Registers + set the mode bits that Process Vioer Mode
determine user or kernel
Interrupts Interrupt Vectors mode SystemCall User Programs
+ disable and enable
System calls Trap instructions and trap vectors interrupts
+ halt the machine
o Interrupts or Memory-Mapping but in kernel mode, the OS does all these things
- - + a status bit in a protected processor register indicates the mode
Scheduling, error Timer + Protected instructions can only be executed in kernel mode.
recovery, billing + Oninterrupts (e.g., time slice) or system calls
Sunchranization Atamic instriiction i 12

History of Operating Systems: Phases

+ Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive
» Personal computing: One system per user
» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing/Cloud computing
» Cell phone, mp3 player, DVD player, TIVO, PDA, iPhone, eReader
> Software as a service, Amazon'’ s elastic compute cloud

History of Operating Systems: Phases

A Brief History of Operating Systems

Hand programmed machines (‘45- ‘55)

+ Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive

» Personal computing: One system per user
» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing

+ Single user systems
+ OS = Joader + libraries of common subroutines

+ Problem: low utilization of expensive components

Execution time

Execution time +
Card reader time

Batch/Off-line processing (‘55- ‘65)

+ Batching v. sequential execution of jobs

Card Reader: | ReadJobl | Job2 | Job3 |

CPU:
Printer: [Printdob1 | Jobz | Job3 |
|
Card Reader: |ReadBatchl | Batch2 | Batch3 |
CPU: Efecute Bate]1 [Batch2 | [Baten3 |
Printer: [PrintBatch 1 | Batch2 | Batch3

Batch processing (‘55- ‘65)

Multiprogramming (‘65- ‘80)

+ Operating system = loader + sequencer + output processor

User Program
“System Software”]
Operating System

Compute

Card Q-0 [e¥Ne)]
{ Reader Tape -/ \ Tape Printer

Input Output

+ Keep several jobs in memory and multiplex CPU between
jobs

.-"| program P Simple, “synchronous” input:

begin What to do while we wait
: for the I/0 device?
5 Read (var)

.|ena P

:
User Program 2 I
,-"| system call Read()
User Program 1 begin
3 StartIO(input device)
“System Software"f- WaitIO (interrupt)

EndlI0 (input device)

Operating System | " |end Read

Multiprogramming (‘65- ‘80)

Multiprogramming (‘65- ‘80)

History of Operating Systems: Phases

+ Keep several jobs in memory and multiplex CPU between
jobs

1/0

Program 1 os Device

User Program n

read{

k: read () —>

User Program 2 startIo()
waitIo()
User Program 1
[endio() —
System Software —— T interrupt
| —

Operating System

+ Keep several jobs in memory and multiplex CPU between
jobs

/0

Program 1 0os Program 2 Device

User Program n

User Program 2
User Program 1

read{

k: read () —

startIo() — —
schedule ()— M
}

endio{ =
“System Software”] ——= <+ T interrupt
o - +—schedule()
}

Operating System

+ Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive

» Personal computing: One system per user
» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing

Timesharing (‘70-)

History of Operating Systems: Phases

Operating Systems for PCs

+ A timer interrupt is used to multiplex CPU among jobs

Program 1 oS Program 2

timer
interrupt

.
H
schedule{

. I
—————— main{
User Program 2 }
time:
User Program 1 inlle"rlrturpl
4 schedule{ +—
“System Software”} :
Operating System

-~

timer
interrupt

schedule{

+ Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive

» Personal computing: One system per user
» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing

+ Personal computing systems
» Single user
» Utilization is no longer a concern —|
» Emphasis is on user interface and API
» Many services & features not present

+ Evolution
» Initially: OS as a simple service provider
(simple libraries)
» Now: Multi-application systems with support
for coordination and communication
» Growing security issues (e.g., online
commerce, medical records)

Distributed Operating Systems

+ Typically support distributed services

» Sharing of data and coordination across multiple systems
+ Possibly employ multiple processors

» Loosely coupled v. tightly coupled systems
+ High availability & reliability requirements

> Amazon, CNN

User User
Program Program
0SS
[ON] [N [file system
process process management name services
management memory management mail services

LAN/WAN

Networl

Increasing importance of security

In the year 2000...

+ Older OSes (including Unix) were not designed with
security as a big concern. Why not?

» Users were typically employees at a company, external
consequences for bad behavior

» Programmers and system designers could assume users
would generally “do the right thing”, but may make honest
mistakes

+ What changed in the 90s?

» The internet!

» Lots of computers administered by amateurs

» Connected to mean people all over the world

» Programs and systems have to defend against abuse

History of Operating Systems: Phases

+ Phase 1: Hardware is expensive, humans are cheap
» User at console: single-user systems
» Batching systems
» Multi-programming systems

+ Phase 2: Hardware is cheap, humans are expensive
» Time sharing: Users use cheap terminals and share servers

+ Phase 3: Hardware is very cheap, humans are very expensive
» Personal computing: One system per user
» Distributed computing: lots of systems per user

+ Phase 4: Ubiquitous computing/Cloud computing
» Everything will have computation, from pacemakers to toasters
» Computing centralizing
> “I think there is a world market for maybe five computers” — Tomas
J. Watson, 1943 (president of IBM)

What is cloud computing?

+ Cloud computing is where dynamically scalable and
often virtualized resources are provided as a service
over the Internet (thanks, wikipedia!)

+ Infrastructure as a service (laaS)

» Amazon’s EC2 (elastic compute cloud)

+ Platform as a service (PaaS)

» Google gears
» Microsoft azure
+ Software as a service (SaaS)
» gmail
> facebook
» flickr

Services Economies of Scale

Substantial economies of scale possible
2006 comparison of very large service with small/mid-sized: (~1000 servers):

Large Service [$13/Mbis/mth]: $0.04/GB

[Medium [$95/Mbis/mth]: $0.30/GB (7.1x)
Large Service: $4.6/GBlyear (2x in 2 DC)
[Medium: $26.00/GB/year* (5.7x)

Large Service: Over 1.000 servers/admin
Enterprise: ~140 servers/admin (7.1x)

High cost of entry
— Physical plant expensive: 15MW roughly $200M

Summary: significant economies of scale but at very high cost of entry
— Small number of large players likely outcome

Thanks, James Hamilton, amazon

Multi-core

Editorial on 2.4

2.4: Object orientation

+ New hotness in CPU design. Not going away.
> Why?
+ Being able to program with threads and concurrent
algorithms will be a crucial job skill going forward
» Don't leave SBU without mastering these skills
» We will do some thread programming in Lab 3

+ Textbook implies modern OSes are microkernels
+ This is false
» Windows NT and OSX were designed as microkernels
» Then reverted to essentially monolithic designs in practice
+ Linux was never a microkernel
» Google the famous Torvalds v Tanenbaum debate
+ Similarly, Distributed OSes are mostly abandoned

» | think cloud and other distributed systems are better
described as loose “confederations” of systems

+ Objects are a key feature of the Windows NT kernel
design
» IMO a good idea
+ Linux actually has its own bizarre version of object
orientation using C structs and function pointers
» In Unix, everything is a file
» How did they pull this off?
» Poor-man’s object inheritance

Richer Operating Systems

Information organization

Course Overview

+ Is it better to search for data (google), or organize it
hierarchically (file folders)?

» Organization along a particular set of ideas (schema) might not
be ideal for a different set of ideas.

» Gmail search vs. mail folders
+ Integration of search in Vista and MacOS.

» Do you use My Documents folder, or do you maintain your own
directories? use both a lot?

+ OS Structure, Processes and Process Management
+ CPU scheduling
+ Threads and concurrent programming

> Thread coordination, mutual exclusion, monitors

> Deadlocks

.

Disks & file systems
» Distributed file systems

+ Virtual memory & Memory management

.

Security

