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Introduction	  to	  Operating	  Systems	  

! An operating system is the interface between the user and the 
architecture. 

! OS as juggler:  providing the illusion of a dedicated machine with 
infinite memory and CPU. 

! OS as government: protecting users from each other, allocating 
resources efficiently and fairly, and providing secure and safe 
communication 

! OS as complex system: keeping OS design and implementation 
as simple as possible is the key to getting the OS to work 

 

User Applications 

Operating System 

Hardware 

Application Programming 
Interface (API) 

Physical Machine Interface 
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What	  is	  an	  Operating	  System?	  

! Any code that runs with the hardware kernel bit set 
Ø  An abstract virtual machine 
Ø  A set of abstractions that simplify application design 

v  Files instead of “bytes on a disk” 

! Core OS services, written by “pros” 
Ø  Processes, process scheduling 
Ø  Address spaces 
Ø  Device control 
Ø  ~30% of Linux source code.  Basis of stability and security 

! Device drivers written by “whoever” 
Ø Software run in kernel to manages a particular vendor’s 

hardware 
  E.g. Homer Simpson doll with USB  

Ø  ~70% of Linux source code 
Ø OS is extensible 
Ø Drivers are the biggest source of OS instability 
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What	  is	  an	  Operating	  System?	  

! For any OS area (CPU scheduling, file systems, 
memory management), begin by asking two 
questions 
Ø What’s the hardware interface? (The Physical Reality) 
Ø What is the application interface? (The Nicer Interface for 

programmer producivity) 

! Key questions: 
Ø Why is the application interface defined the way it is? 
Ø Should we push more functionality into applications, the OS, 

or the hardware? 
Ø What are the tradeoffs between programmability, complexity, 

and flexibility? 
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Operating	  System	  Functions	  

! Service provider 
Ø  Provide standard facilities  

  File system 
  Standard libraries 
  Window system 
  … 

! Coordinator: three aspects 
Ø  Protection: prevent jobs from interfering with each other 
Ø  Communication: enable jobs to interact with each other 
Ø  Resource management: facilitate sharing of resources across jobs. 

! Operating systems are everywhere 
Ø  Single-function devices (embedded controllers, Nintendo, …) 

  OS provides a collection of standard services 
  Sometimes OS/middleware distinction is blurry 

Ø  Multi-function/application devices (workstations and servers) 
  OS manages application interactions 
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Why	  do	  we	  need	  operating	  systems?	  

! Convenience 
Ø Provide a high-level abstraction of physical resources. 

  Make hardware usable by getting rid of warts & specifics. 
Ø Enable the construction of more complex software systems 
Ø Enable portable code. 

  MS-DOS version 1 boots on the latest Intel Core. 
  Would games that ran on MS-DOSv1 work well today? 

 

! Efficiency 
Ø Share limited or expensive physical resources. 
Ø Provide protection. 
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Computer Architecture & Processes 

! CPU - the processor that performs the actual computation  
! I/O devices - terminal, disks, video board, printer, etc.  
! Memory - RAM containing data and programs used by the 

CPU  
! System bus - the communication medium between the CPU, 

memory, and peripherals 
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Evolution?	  

! What does this book cover 
imply to you? 

! Do OSes evolve?  How? 
Ø New hardware 

 Multi-core, GPUs, 
power management 

Ø New applications 

 Cloud, mobile apps, 
games, VoIP 
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Evolution of Operating Systems 

! Why do operating systems change? 
Ø  Key functions: hardware abstraction and coordination 
Ø  Principle: Design tradeoffs change as technology changes. 

! Comparing computing systems from 1981 and 2007 
 1981 2007 Factor 

MIPS 1 57,000 57,000 

$/SPECInt $100K $2 50,000 

DRAM size 128KB 2GB 16,000 

Disk size 10MB 1TB 100,000 

Net BW 9600 bps 100 Mb/s 10,000 

Address bits 16 64 4 

Users/machine 100 <1 100 

! Energy efficiency and parallelism loom on the horizon. 
! Data centers consume ~3% of US energy 
! No more single-core CPUs  
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From Architecture to OS to Application, and 
Back 

 

Hardware Example OS Services User Abstraction 
Processor Process management, 

Scheduling, Traps, 
Protections, Billing, 
Synchronization 

Process 

Memory Management, Protection, 
Virtual memory 

Address space 

I/O devices Concurrency with CPU, 
Interrupt handling 

Terminal, Mouse, 
Printer, (System 
Calls) 

File system Management, Persistence Files 

Distributed 
systems 

Network security, Distributed 
file system 

RPC system calls, 
Transparent file 
sharing 
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From Architectural to OS to Application, and 
Back 

 
OS Service Hardware Support 
Protection Kernel / User mode 

Protected Instructions 
Base and Limit Registers 

Interrupts Interrupt Vectors 

System calls Trap instructions and trap vectors 

I/O Interrupts or Memory-Mapping 

Scheduling, error 
recovery, billing 

Timer 

Synchronization Atomic instructions 

Virtual Memory Translation look-aside buffers 
Register pointing to base of page table 
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Interrupts - Moving from Kernel to User Mode 

User processes may not: 
! address I/O directly 
! use instructions that  
     manipulate OS memory  
     (e.g., page tables) 
! set the mode bits that  
     determine user or kernel  
     mode 
! disable and enable  
     interrupts 
! halt the machine 

but in kernel mode, the OS does all these things 
! a status bit in a protected processor register indicates the mode 
! Protected instructions can only be executed in kernel mode. 
! On interrupts (e.g., time slice) or system calls 
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History	  of	  Operating	  Systems:	  Phases	  

! Phase 1: Hardware is expensive, humans are cheap 
Ø  User at console: single-user systems 
Ø  Batching systems 
Ø  Multi-programming systems 

! Phase 2: Hardware is cheap, humans are expensive 
Ø  Time sharing: Users use cheap terminals and share servers 

! Phase 3: Hardware is very cheap, humans are very expensive 
Ø  Personal computing: One system per user 
Ø  Distributed computing: lots of systems per user 

! Phase 4: Ubiquitous computing/Cloud computing 
Ø  Cell phone, mp3 player, DVD player, TIVO, PDA, iPhone, eReader 
Ø  Software as a service, Amazon’s elastic compute cloud 

14	


History	  of	  Operating	  Systems:	  Phases	  

! Phase 1: Hardware is expensive, humans are cheap 
Ø  User at console: single-user systems 
Ø  Batching systems 
Ø  Multi-programming systems 

! Phase 2: Hardware is cheap, humans are expensive 
Ø  Time sharing: Users use cheap terminals and share servers 

! Phase 3: Hardware is very cheap, humans are very expensive 
Ø  Personal computing: One system per user 
Ø  Distributed computing: lots of systems per user 

! Phase 4: Ubiquitous computing 
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A	  Brief	  History	  of	  Operating	  Systems	  
Hand	  programmed	  machines	  (‘45-‐‘55)	  

! Single user systems 

! OS = loader + libraries of common subroutines 

! Problem: low utilization of expensive components 

=  % utilization  	

Execution time	


Execution time +	

Card reader time	
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Batch/Off-‐line	  processing	  (‘55-‐‘65)	  

! Batching v. sequential execution of jobs 

Card Reader:!

CPU:!

Printer:!

Read Batch 1	


Execute Batch 1	
 Batch 2	
 Batch 3	


Batch 2	
 Batch 3	


Print Batch 1	
 Batch 2	
 Batch 3	


Card Reader:!

CPU:!

Printer:!

Read Job 1	


Execute Job 1	
 Job 2	
 Job 3	


Job 2	
 Job 3	


Print Job 1	
 Job 2	
 Job 3	
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Tape	


 
Tape 

	  
Batch	  processing	  (‘55-‐‘65)	  

! Operating system = loader + sequencer + output processor 

Input	


Compute	


Output	


Card	

Reader Printer 

 
Tape 

 
Tape	


Operating System	


“System Software”	


User Program	


User Data	
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Multiprogramming	  (‘65-‐‘80)	  

! Keep several jobs in memory and multiplex CPU between 
jobs 

Operating System	


“System Software”	


User Program 1	


User Program 2	
User Program 2	


User Program n	


...
	


program P!
begin!
   :!
  Read(var)!
   :  
end P!

system call Read()!
begin!
  StartIO(input device)!
  WaitIO(interrupt)!
  EndIO(input device)!
   :  
end Read!

Simple, “synchronous” input: 
What to do while we wait 
for the I/O device? 
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Multiprogramming	  (‘65-‐‘80)	  

! Keep several jobs in memory and multiplex CPU between 
jobs 

Operating System	


“System Software”	


User Program 1	


User Program 2	
User Program 2	


User Program n	


...
	


Program 1	
 I/O	

Device	


k: read()	


k+1:	


endio()	

interrupt	


main{	


}	


}	


OS	


read{	


startIO()!
waitIO()!
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Multiprogramming	  (‘65-‐‘80)	  

! Keep several jobs in memory and multiplex CPU between 
jobs 

Operating System	


“System Software”	


User Program 1	


User Program 2	
User Program 2	


User Program n	


...
	


Program 1	
 Program 2	
OS	
 I/O	

Device	


k: read()	


startIO()	


interrupt	


main{	


read{	


endio{	


}	

schedule()	


main{	


k+1:	


}	


}	

schedule()	
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History	  of	  Operating	  Systems:	  Phases	  

! Phase 1: Hardware is expensive, humans are cheap 
Ø  User at console: single-user systems 
Ø  Batching systems 
Ø  Multi-programming systems 

! Phase 2: Hardware is cheap, humans are expensive 
Ø  Time sharing: Users use cheap terminals and share servers 

! Phase 3: Hardware is very cheap, humans are very expensive 
Ø  Personal computing: One system per user 
Ø  Distributed computing: lots of systems per user 

! Phase 4: Ubiquitous computing 
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Timesharing	  (‘70-‐	  	  )	  

! A timer interrupt is used to multiplex CPU among jobs 

Operating System	


“System Software”	


User Program 1	


User Program 2	
User Program 2	


User Program n	


...
	


Program 1	
 Program 2	
OS	


k+1:	

schedule{	


timer	

interrupt	


schedule{	


timer	

interrupt	


k:	


main{	


}	
 main{	


}	


timer	

interrupt	


schedule{	
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History	  of	  Operating	  Systems:	  Phases	  

! Phase 1: Hardware is expensive, humans are cheap 
Ø  User at console: single-user systems 
Ø  Batching systems 
Ø  Multi-programming systems 

! Phase 2: Hardware is cheap, humans are expensive 
Ø  Time sharing: Users use cheap terminals and share servers 

! Phase 3: Hardware is very cheap, humans are very expensive 
Ø  Personal computing: One system per user 
Ø  Distributed computing: lots of systems per user 

! Phase 4: Ubiquitous computing 
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Operating	  Systems	  for	  PCs	  

! Personal computing systems 
Ø Single user 
Ø Utilization is no longer a concern 
Ø Emphasis is on user interface and API 
Ø Many services & features not present 

! Evolution 
Ø  Initially: OS as a simple service provider 

(simple libraries) 
Ø Now: Multi-application systems with support 

for coordination and communication 
Ø Growing security issues (e.g., online 

commerce, medical records) 
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Distributed	  Operating	  Systems	  

! Typically support distributed services 
Ø  Sharing of data and coordination across multiple systems 

! Possibly employ multiple processors 
Ø  Loosely coupled v. tightly coupled systems 

! High availability & reliability requirements 
Ø  Amazon, CNN 

OS	

process	


management	


User	

Program	


CPU	


LAN/WAN	


OS	

process management	

memory management	


User	

Program	


CPU	


OS	

file system	


name services	

mail services	


CPU	


Network	
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Increasing	  importance	  of	  security	  

! Older OSes (including Unix) were not designed with 
security as a big concern. Why not? 
Ø Users were typically employees at a company, external 

consequences for bad behavior 
Ø Programmers and system designers could assume users 

would generally “do the right thing”, but may make honest 
mistakes 

! What changed in the 90s? 
Ø  The internet! 
Ø  Lots of computers administered by amateurs 
Ø Connected to mean people all over the world 
Ø Programs and systems have to defend against abuse 
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In	  the	  year	  2000…	  
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History	  of	  Operating	  Systems:	  Phases	  

! Phase 1: Hardware is expensive, humans are cheap 
Ø  User at console: single-user systems 
Ø  Batching systems 
Ø  Multi-programming systems 

! Phase 2: Hardware is cheap, humans are expensive 
Ø  Time sharing: Users use cheap terminals and share servers 

! Phase 3: Hardware is very cheap, humans are very expensive 
Ø  Personal computing: One system per user 
Ø  Distributed computing: lots of systems per user 

! Phase 4: Ubiquitous computing/Cloud computing 
Ø  Everything will have computation, from pacemakers to toasters 
Ø  Computing centralizing 
Ø  “I think there is a world market for maybe five computers” – Tomas 

J. Watson, 1943 (president of IBM) 
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What	  is	  cloud	  computing?	  

! Cloud computing is where dynamically scalable and 
often virtualized resources are provided as a service 
over the Internet (thanks, wikipedia!) 

! Infrastructure as a service (IaaS) 
Ø Amazon’s EC2 (elastic compute cloud) 

! Platform as a service (PaaS) 
Ø Google gears 
Ø Microsoft azure 

! Software as a service (SaaS) 
Ø  gmail 
Ø  facebook 
Ø  flickr 
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Thanks, James Hamilton, amazon	
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Multi-‐core	  

! New hotness in CPU design.  Not going away. 
Ø Why?   

! Being able to program with threads and concurrent 
algorithms will be a crucial job skill going forward 
Ø Don’t leave SBU without mastering these skills 
Ø We will do some thread programming in Lab 3 
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Editorial	  on	  2.4	  

! Textbook implies modern OSes are microkernels 
! This is false 

Ø Windows NT and OSX were designed as microkernels 
Ø  Then reverted to essentially monolithic designs in practice 

! Linux was never a microkernel 
Ø Google the famous Torvalds v Tanenbaum debate 

! Similarly, Distributed OSes are mostly abandoned 
Ø  I think cloud and other distributed systems are better 

described as loose “confederations” of systems 
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2.4:	  Object	  orientation	  

! Objects are a key feature of the Windows NT kernel 
design  
Ø  IMO a good idea 

! Linux actually has its own bizarre version of object 
orientation using C structs and function pointers 
Ø  In Unix, everything is a file 
Ø How did they pull this off?   
Ø Poor-man’s object inheritance 
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Richer	  Operating	  Systems	  
Information	  organization	  

! Is it better to search for data (google), or organize it 
hierarchically (file folders)? 
Ø Organization along a particular set of ideas (schema) might not 

be ideal for a different set of ideas. 
Ø Gmail search vs. mail folders 

! Integration of search in Vista and MacOS. 
Ø Do you use My Documents folder, or do you maintain your own 

directories? use both a lot? 
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Course	  Overview	  
	  

! OS Structure, Processes and Process Management 

! CPU scheduling 

! Threads and concurrent programming 

Ø  Thread coordination, mutual exclusion, monitors 

Ø  Deadlocks 

! Disks & file systems 

Ø  Distributed file systems 

! Virtual memory & Memory management 

! Security 


