
1	

Operating Systems:
Basic Concepts and History

Don Porter

Portions courtesy Emmett Witchel 	

2	

Introduction	 to	 Operating	 Systems	

! An operating system is the interface between the user and the
architecture.

! OS as juggler: providing the illusion of a dedicated machine with
infinite memory and CPU.

! OS as government: protecting users from each other, allocating
resources efficiently and fairly, and providing secure and safe
communication

! OS as complex system: keeping OS design and implementation
as simple as possible is the key to getting the OS to work

User Applications

Operating System

Hardware

Application Programming
Interface (API)

Physical Machine Interface

3	

	
What	 is	 an	 Operating	 System?	

! Any code that runs with the hardware kernel bit set
Ø  An abstract virtual machine
Ø  A set of abstractions that simplify application design

v  Files instead of “bytes on a disk”

! Core OS services, written by “pros”
Ø  Processes, process scheduling
Ø  Address spaces
Ø  Device control
Ø  ~30% of Linux source code. Basis of stability and security

! Device drivers written by “whoever”
Ø Software run in kernel to manages a particular vendor’s

hardware
  E.g. Homer Simpson doll with USB

Ø  ~70% of Linux source code
Ø OS is extensible
Ø Drivers are the biggest source of OS instability

4	

	
What	 is	 an	 Operating	 System?	

! For any OS area (CPU scheduling, file systems,
memory management), begin by asking two
questions
Ø What’s the hardware interface? (The Physical Reality)
Ø What is the application interface? (The Nicer Interface for

programmer producivity)

! Key questions:
Ø Why is the application interface defined the way it is?
Ø Should we push more functionality into applications, the OS,

or the hardware?
Ø What are the tradeoffs between programmability, complexity,

and flexibility?

5	

Operating	 System	 Functions	

! Service provider
Ø  Provide standard facilities

  File system
  Standard libraries
  Window system
  …

! Coordinator: three aspects
Ø  Protection: prevent jobs from interfering with each other
Ø  Communication: enable jobs to interact with each other
Ø  Resource management: facilitate sharing of resources across jobs.

! Operating systems are everywhere
Ø  Single-function devices (embedded controllers, Nintendo, …)

  OS provides a collection of standard services
  Sometimes OS/middleware distinction is blurry

Ø  Multi-function/application devices (workstations and servers)
  OS manages application interactions

6	

	
Why	 do	 we	 need	 operating	 systems?	

! Convenience
Ø Provide a high-level abstraction of physical resources.

  Make hardware usable by getting rid of warts & specifics.
Ø Enable the construction of more complex software systems
Ø Enable portable code.

  MS-DOS version 1 boots on the latest Intel Core.
  Would games that ran on MS-DOSv1 work well today?

! Efficiency
Ø Share limited or expensive physical resources.
Ø Provide protection.

7	

Computer Architecture & Processes

! CPU - the processor that performs the actual computation
! I/O devices - terminal, disks, video board, printer, etc.
! Memory - RAM containing data and programs used by the

CPU
! System bus - the communication medium between the CPU,

memory, and peripherals

8	

Evolution?	

! What does this book cover
imply to you?

! Do OSes evolve? How?
Ø New hardware

 Multi-core, GPUs,
power management

Ø New applications

 Cloud, mobile apps,
games, VoIP

9	

Evolution of Operating Systems

! Why do operating systems change?
Ø  Key functions: hardware abstraction and coordination
Ø  Principle: Design tradeoffs change as technology changes.

! Comparing computing systems from 1981 and 2007
 1981 2007 Factor

MIPS 1 57,000 57,000

$/SPECInt $100K $2 50,000

DRAM size 128KB 2GB 16,000

Disk size 10MB 1TB 100,000

Net BW 9600 bps 100 Mb/s 10,000

Address bits 16 64 4

Users/machine 100 <1 100

! Energy efficiency and parallelism loom on the horizon.
! Data centers consume ~3% of US energy
! No more single-core CPUs

10	

From Architecture to OS to Application, and
Back

Hardware Example OS Services User Abstraction
Processor Process management,

Scheduling, Traps,
Protections, Billing,
Synchronization

Process

Memory Management, Protection,
Virtual memory

Address space

I/O devices Concurrency with CPU,
Interrupt handling

Terminal, Mouse,
Printer, (System
Calls)

File system Management, Persistence Files

Distributed
systems

Network security, Distributed
file system

RPC system calls,
Transparent file
sharing

11	

From Architectural to OS to Application, and
Back

OS Service Hardware Support
Protection Kernel / User mode

Protected Instructions
Base and Limit Registers

Interrupts Interrupt Vectors

System calls Trap instructions and trap vectors

I/O Interrupts or Memory-Mapping

Scheduling, error
recovery, billing

Timer

Synchronization Atomic instructions

Virtual Memory Translation look-aside buffers
Register pointing to base of page table

12	

Interrupts - Moving from Kernel to User Mode

User processes may not:
! address I/O directly
! use instructions that
 manipulate OS memory
 (e.g., page tables)
! set the mode bits that
 determine user or kernel
 mode
! disable and enable
 interrupts
! halt the machine

but in kernel mode, the OS does all these things
! a status bit in a protected processor register indicates the mode
! Protected instructions can only be executed in kernel mode.
! On interrupts (e.g., time slice) or system calls

13	

History	 of	 Operating	 Systems:	 Phases	

! Phase 1: Hardware is expensive, humans are cheap
Ø  User at console: single-user systems
Ø  Batching systems
Ø  Multi-programming systems

! Phase 2: Hardware is cheap, humans are expensive
Ø  Time sharing: Users use cheap terminals and share servers

! Phase 3: Hardware is very cheap, humans are very expensive
Ø  Personal computing: One system per user
Ø  Distributed computing: lots of systems per user

! Phase 4: Ubiquitous computing/Cloud computing
Ø  Cell phone, mp3 player, DVD player, TIVO, PDA, iPhone, eReader
Ø  Software as a service, Amazon’s elastic compute cloud

14	

History	 of	 Operating	 Systems:	 Phases	

! Phase 1: Hardware is expensive, humans are cheap
Ø  User at console: single-user systems
Ø  Batching systems
Ø  Multi-programming systems

! Phase 2: Hardware is cheap, humans are expensive
Ø  Time sharing: Users use cheap terminals and share servers

! Phase 3: Hardware is very cheap, humans are very expensive
Ø  Personal computing: One system per user
Ø  Distributed computing: lots of systems per user

! Phase 4: Ubiquitous computing

15	

A	 Brief	 History	 of	 Operating	 Systems	
Hand	 programmed	 machines	 (‘45-‐‘55)	

! Single user systems

! OS = loader + libraries of common subroutines

! Problem: low utilization of expensive components

= % utilization 	

Execution time	

Execution time +	

Card reader time	

16	

	
Batch/Off-‐line	 processing	 (‘55-‐‘65)	

! Batching v. sequential execution of jobs

Card Reader:!

CPU:!

Printer:!

Read Batch 1	

Execute Batch 1	
 Batch 2	
 Batch 3	

Batch 2	
 Batch 3	

Print Batch 1	
 Batch 2	
 Batch 3	

Card Reader:!

CPU:!

Printer:!

Read Job 1	

Execute Job 1	
 Job 2	
 Job 3	

Job 2	
 Job 3	

Print Job 1	
 Job 2	
 Job 3	

17	

Tape	

Tape

	
Batch	 processing	 (‘55-‐‘65)	

! Operating system = loader + sequencer + output processor

Input	

Compute	

Output	

Card	

Reader Printer

Tape

Tape	

Operating System	

“System Software”	

User Program	

User Data	

18	

	
Multiprogramming	 (‘65-‐‘80)	

! Keep several jobs in memory and multiplex CPU between
jobs

Operating System	

“System Software”	

User Program 1	

User Program 2	
User Program 2	

User Program n	

...
	

program P!
begin!
 :!
 Read(var)!
 :  
end P!

system call Read()!
begin!
 StartIO(input device)!
 WaitIO(interrupt)!
 EndIO(input device)!
 :  
end Read!

Simple, “synchronous” input:
What to do while we wait
for the I/O device?

19	

	
Multiprogramming	 (‘65-‐‘80)	

! Keep several jobs in memory and multiplex CPU between
jobs

Operating System	

“System Software”	

User Program 1	

User Program 2	
User Program 2	

User Program n	

...
	

Program 1	
 I/O	

Device	

k: read()	

k+1:	

endio()	

interrupt	

main{	

}	

}	

OS	

read{	

startIO()!
waitIO()!

20	

	
Multiprogramming	 (‘65-‐‘80)	

! Keep several jobs in memory and multiplex CPU between
jobs

Operating System	

“System Software”	

User Program 1	

User Program 2	
User Program 2	

User Program n	

...
	

Program 1	
 Program 2	
OS	
 I/O	

Device	

k: read()	

startIO()	

interrupt	

main{	

read{	

endio{	

}	

schedule()	

main{	

k+1:	

}	

}	

schedule()	

21	

History	 of	 Operating	 Systems:	 Phases	

! Phase 1: Hardware is expensive, humans are cheap
Ø  User at console: single-user systems
Ø  Batching systems
Ø  Multi-programming systems

! Phase 2: Hardware is cheap, humans are expensive
Ø  Time sharing: Users use cheap terminals and share servers

! Phase 3: Hardware is very cheap, humans are very expensive
Ø  Personal computing: One system per user
Ø  Distributed computing: lots of systems per user

! Phase 4: Ubiquitous computing

22	

	
Timesharing	 (‘70-‐)	

! A timer interrupt is used to multiplex CPU among jobs

Operating System	

“System Software”	

User Program 1	

User Program 2	
User Program 2	

User Program n	

...
	

Program 1	
 Program 2	
OS	

k+1:	

schedule{	

timer	

interrupt	

schedule{	

timer	

interrupt	

k:	

main{	

}	
 main{	

}	

timer	

interrupt	

schedule{	

23	

History	 of	 Operating	 Systems:	 Phases	

! Phase 1: Hardware is expensive, humans are cheap
Ø  User at console: single-user systems
Ø  Batching systems
Ø  Multi-programming systems

! Phase 2: Hardware is cheap, humans are expensive
Ø  Time sharing: Users use cheap terminals and share servers

! Phase 3: Hardware is very cheap, humans are very expensive
Ø  Personal computing: One system per user
Ø  Distributed computing: lots of systems per user

! Phase 4: Ubiquitous computing

24	

Operating	 Systems	 for	 PCs	

! Personal computing systems
Ø Single user
Ø Utilization is no longer a concern
Ø Emphasis is on user interface and API
Ø Many services & features not present

! Evolution
Ø  Initially: OS as a simple service provider

(simple libraries)
Ø Now: Multi-application systems with support

for coordination and communication
Ø Growing security issues (e.g., online

commerce, medical records)

25	

Distributed	 Operating	 Systems	

! Typically support distributed services
Ø  Sharing of data and coordination across multiple systems

! Possibly employ multiple processors
Ø  Loosely coupled v. tightly coupled systems

! High availability & reliability requirements
Ø  Amazon, CNN

OS	

process	

management	

User	

Program	

CPU	

LAN/WAN	

OS	

process management	

memory management	

User	

Program	

CPU	

OS	

file system	

name services	

mail services	

CPU	

Network	

26	

Increasing	 importance	 of	 security	

! Older OSes (including Unix) were not designed with
security as a big concern. Why not?
Ø Users were typically employees at a company, external

consequences for bad behavior
Ø Programmers and system designers could assume users

would generally “do the right thing”, but may make honest
mistakes

! What changed in the 90s?
Ø  The internet!
Ø  Lots of computers administered by amateurs
Ø Connected to mean people all over the world
Ø Programs and systems have to defend against abuse

27	

In	 the	 year	 2000…	

28	

History	 of	 Operating	 Systems:	 Phases	

! Phase 1: Hardware is expensive, humans are cheap
Ø  User at console: single-user systems
Ø  Batching systems
Ø  Multi-programming systems

! Phase 2: Hardware is cheap, humans are expensive
Ø  Time sharing: Users use cheap terminals and share servers

! Phase 3: Hardware is very cheap, humans are very expensive
Ø  Personal computing: One system per user
Ø  Distributed computing: lots of systems per user

! Phase 4: Ubiquitous computing/Cloud computing
Ø  Everything will have computation, from pacemakers to toasters
Ø  Computing centralizing
Ø  “I think there is a world market for maybe five computers” – Tomas

J. Watson, 1943 (president of IBM)

29	

What	 is	 cloud	 computing?	

! Cloud computing is where dynamically scalable and
often virtualized resources are provided as a service
over the Internet (thanks, wikipedia!)

! Infrastructure as a service (IaaS)
Ø Amazon’s EC2 (elastic compute cloud)

! Platform as a service (PaaS)
Ø Google gears
Ø Microsoft azure

! Software as a service (SaaS)
Ø  gmail
Ø  facebook
Ø  flickr

30	

Thanks, James Hamilton, amazon	

31	

Multi-‐core	

! New hotness in CPU design. Not going away.
Ø Why?

! Being able to program with threads and concurrent
algorithms will be a crucial job skill going forward
Ø Don’t leave SBU without mastering these skills
Ø We will do some thread programming in Lab 3

32	

Editorial	 on	 2.4	

! Textbook implies modern OSes are microkernels
! This is false

Ø Windows NT and OSX were designed as microkernels
Ø  Then reverted to essentially monolithic designs in practice

! Linux was never a microkernel
Ø Google the famous Torvalds v Tanenbaum debate

! Similarly, Distributed OSes are mostly abandoned
Ø  I think cloud and other distributed systems are better

described as loose “confederations” of systems

33	

2.4:	 Object	 orientation	

! Objects are a key feature of the Windows NT kernel
design
Ø  IMO a good idea

! Linux actually has its own bizarre version of object
orientation using C structs and function pointers
Ø  In Unix, everything is a file
Ø How did they pull this off?
Ø Poor-man’s object inheritance

34	

Richer	 Operating	 Systems	
Information	 organization	

! Is it better to search for data (google), or organize it
hierarchically (file folders)?
Ø Organization along a particular set of ideas (schema) might not

be ideal for a different set of ideas.
Ø Gmail search vs. mail folders

! Integration of search in Vista and MacOS.
Ø Do you use My Documents folder, or do you maintain your own

directories? use both a lot?

35	

Course	 Overview	
	

! OS Structure, Processes and Process Management

! CPU scheduling

! Threads and concurrent programming

Ø  Thread coordination, mutual exclusion, monitors

Ø  Deadlocks

! Disks & file systems

Ø  Distributed file systems

! Virtual memory & Memory management

! Security

