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Background: Control Flow
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// x =2, y = true void printf(va_args)

. {
if (y) {

e olemee
printf (x);

Y /.

Regular control flow: branches and calls
(logically follows source code)

Background: Control Flow
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// x = - void handle divzero()
Divide by zero! { -

s Program can’t make
if (y) progress!
y = 2;
y=2/x;

printf (x);
Y /...

Irregular control flow: exceptions, system calls, etc.

Lecture goal
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4+ Understand the hardware tools available for irregular
control flow.
+ Le, things other than a branch in a running program

4+ Building blocks for context switching, device
management, etc.

Two types of interrupts
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+ Synchronous: will happen every time an instruction
executes (with a given program state)
+ Divide by zero
+ System call
+ Bad pointer dereference

+ Asynchronous: caused by an external event

+ Usually device I/0

4+ Timer ticks (well, clocks can be considered a device)

Asynchronous Example
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Intel nomenclature
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+ Interrupt — only refers to asynchronous interrupts

+ Exception — synchronous control transfer

+ Note: from the programmer’s perspective, these are
handled with the same abstractions
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Lecture outline
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Overview

How interrupts work in hardware

4+
4
+ How interrupt handlers work in software
+ How system calls work

4+

New system call hardware on x86

Interrupt overview
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+ Each interrupt or exception includes a number indicating

its type
+ E.g., 14 is a page fault, 3 is a debug breakpoint

4 This number is the index into an interrupt table

x86 interrupt table
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x86 interrupt overview
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4+ Each type of interrupt is assigned an index from 0—255.

+ 0—31 are for processor interrupts; generally fixed by Intel
+ E.g., 14 is always for page faults

4+ 32—255 are software configured

+ 32—47 are often for device interrupts (IRQs)
+ Most device’s IRQ line can be configured
+ Look up APICs for more info (Ch 4 of Bovet and Cesati)

+ 0x80 issues system call in Linux (more on this later)

Software interrupts
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4 The int <num> instruction allows software to raise an
interrupt
4+ 0x80 is just a Linux convention.
+ You could change it to use 0x81!
4 There are a lot of spare indices
+ You could have multiple system call tables for different
purposes or types of processes!

+ Windows does: one for the kernel and one for win32k




Software interrupts, cont
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+ OS sets ring level required to raise an interrupt
+ Generally, user programs can’t issue an int 14 (page
fault manually)

+ An unauthorized int instruction causes a general
protection fault

+ Interrupt 13
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What happens (generally):

+ Control jumps to the kernel

+ Ata prescribed address (the interrupt handler)

4 The register state of the program is dumped on the kernel’s
stack
+ Sometimes, extra info is loaded into CPU registers

+ E.g., page faults store the address that caused the fault in the
cr2 register

4+ Kernel code runs and handles the interrupt

+ When handler completes, resume program (see iret instr.)

How it works (HW)

+ How does HW know what to execute?

+ Where does the HW dump the registers; what does it use
as the interrupt handler’s stack?

How is this configured?
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4+ Kernel creates an array of Interrupt descriptors in

memory, called Interrupt Descriptor Table, or IDT

+ Can be anywhere in physical memory
+ Pointed to by special register (idtr)
+ c.f, segment registers and gdtr and 1dtr

<+ Entry 0 configures interrupt 0, and so on

x86 interrupt table
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idtr
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Address of Interrupt Table

x86 interrupt table
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Code Segment: Kernel Code

Segment Offset: &page_fault_handler //linear addr
Ring: 0 // kernel

Present: 1

Gate Type: Exception




Interrupt Descriptor
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+ Code segment selector

+ Almost always the same (kernel code segment)
+ Recall, this was designed before paging on x86!
+ Segment offset of the code to run

+ Kernel segment is “flat”, so this is just the linear address
<+ Privilege Level (ring)

+ Interrupts can be sent directly to user code. Why?
4+ Present bit — disable unused interrupts

Gate type (interrupt or trap/exception) — more in a bit

2/18/13

x86 interrupt table
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idtr

EEESHEE=EEEE=
47

|
0 3 31

Code Segment: Kernel Code

Segment Offset: &breakpoint_handler //linear addr
Ring: 3 // user

Present: 1

Gate Type: Exception

255

Interrupt Descriptors, ctd.
+ In-memory layout is a bit confusing

+ Like a lot of the x86 architecture, many interfaces were
later deprecated

How it works (HW)
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+ How does HW know what to execute?

<+ Interrupt descriptor table specifies what code to run and at
what privilege
+ This can be set up once during boot for the whole system
+ Where does the HW dump the registers; what does it use
as the interrupt handler’s stack?

4+ Specified in the Task State Segment

Task State Segment (TSS)

e
+ Another magic control block

+ Pointed to by special task register (tr)

+ Actually stored in the segment table (more on segmentation
later)

+ Hardware-specified layout
+ Lots of fields for rarely-used features

+ Two features we care about in a modern OS:

+ 1) Location of kernel stack (fields ss0/esp0)

+ 2)I/0 Port privileges (more in a later lecture)

TSS, cont.
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4+ Simple model: specify a TSS for each process
<+ Optimization (for a simple uniprocessor OS):

+ Why not just share one TSS and kernel stack per-process?
<+ Linux generalization:

+ One TSS per CPU
+ Modify TSS fields as part of context switching




Summary
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+ Most interrupt handling hardware state set during boot
<+ Each interrupt has an IDT entry specifying:

+ What code to execute, privilege level to raise the interrupt
4+ Stack to use specified in the TSS
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Lecture outline
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Overview

How interrupts work in hardware

How interrupt handlers work in software
How system calls work

New system call hardware on x86

Interrupt handlers
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4 Just plain old code in the kernel

+ Sort of like exception handlers in Java
+ But separated from the control flow of the program
+ The IDT stores a pointer to the right handler routine

Lecture outline
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Overview

How interrupts work in hardware

How interrupt handlers work in software
How system calls work

New system call hardware on x86

What is a system call?
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+ A function provided to applications by the OS kernel

+ Generally to use a hardware abstraction (file, socket)
4+ Or OS-provided software abstraction (IPC, scheduling)
+ Why not put these directly in the application?
+ Protection of the OS/hardware from buggy/malicious
programs

+ Applications are not allowed to directly interact with
hardware, or access kernel data structures

System call “interrupt”
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Originally, system calls issued using int instruction
Dispatch routine was just an interrupt handler
Like interrupts, system calls are arranged in a table

+ See arch/x86/kernel/syscall_table*.S in Linux source
Program selects the one it wants by placing index in eax
register

+ Arguments go in the other registers by calling convention

4+ Return value goes in eax




How many system calls?
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+ Linux exports about 350 system calls

+ Windows exports about 400 system calls for core APIs,
and another 800 for GUI methods
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But why use interrupts?
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+ Also protection
+ Forces applications to call well-defined “public” functions

+ Rather than calling arbitrary internal kernel functions
+ Example:

public foo() {
if (!permission_ok()) return -EPERM;

Calling _foo()

return _foo(); // no permission check directly would
circumvent

permission check

Summary
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+ System calls are the “public” OS APIs

Kernel leverages interrupts to restrict applications to
specific functions

4+ Lab 1 hint: How to issue a Linux system call?

+ int $0x80, with system call number in eax register

Lecture outline
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Overview

How interrupts work in hardware

4+
4
+ How interrupt handlers work in software
+ How system calls work

4+

New system call hardware on x86

Around P4 era...
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4+ Processors got very deeply pipelined
+ Pipeline stalls/flushes became very expensive
+ Cache misses can cause pipeline stalls

+ System calls took twice as long from P3 to P4
+ Why?
+ IDT entry may not be in the cache

+ Different permissions constrain instruction reordering

Idea
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<+ What if we cache the IDT entry for a system call in a
special CPU register?
+ No more cache misses for the IDT!
+ Maybe we can also do more optimizations

4 Assumption: system calls are frequent enough to be
worth the transistor budget to implement this

+ What else could you do with extra transistors that helps
performance?




AMD: syscall/sysreturn

4 These instructions use MSRs (machine specific registers)
to store:

+ Syscall entry point and code segment
+ Kernel stack
4+ Drop-in replacement for int $0x80

+ Longer saga with Intel variant
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Aftermath
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+ Getpid() on my desktop machine (recent AMD 6-core):
+ Int 80: 371 cycles

4 Syscall: 231 cycles
+ So system calls are definitely faster as a result!

InLab 1
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+ You will use the int instruction to implement system calls

+ You are welcome to use syscall if you prefer

Summary
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4+ Interrupt handlers are specified in the IDT
<+ Understand how system calls are executed

+ Why interrupts?

+ Why special system call instructions?




