Interrupts and System
Calls

Don Porter
CSE 306

R X

2/18/13

Background: Control Flow

e e

// x =2, y = true void printf(va_args)

. {
if (y) {

e olemee
printf (x);

Y /.

Regular control flow: branches and calls
(logically follows source code)

Background: Control Flow

ce o oo
// x = - void handle divzero()
Divide by zero! { -

s Program can’t make
if (y) progress!
y = 2;
y=2/x;

printf (x);
Y /...

Irregular control flow: exceptions, system calls, etc.

Lecture goal

L e o

4+ Understand the hardware tools available for irregular
control flow.
+ Le, things other than a branch in a running program

4+ Building blocks for context switching, device
management, etc.

Two types of interrupts

L e TE X3

+ Synchronous: will happen every time an instruction
executes (with a given program state)
+ Divide by zero
+ System call
+ Bad pointer dereference

+ Asynchronous: caused by an external event

+ Usually device I/0

4+ Timer ticks (well, clocks can be considered a device)

Asynchronous Example

Stack s

I
I
I
|
=) L Disk_handl,
printf (“Boo”) ; 1 isk_handler (){
TG : }
printf (va_args..){ 1
555 1

User! Kernel

Intel nomenclature

TR ..
+ Interrupt — only refers to asynchronous interrupts

+ Exception — synchronous control transfer

+ Note: from the programmer’s perspective, these are
handled with the same abstractions

2/18/13

Lecture outline

coo coe
Overview

How interrupts work in hardware

4+
4
+ How interrupt handlers work in software
+ How system calls work

4+

New system call hardware on x86

Interrupt overview

TR .

+ Each interrupt or exception includes a number indicating

its type
+ E.g., 14 is a page fault, 3 is a debug breakpoint

4 This number is the index into an interrupt table

x86 interrupt table

e

=
Device IRQs 128 = Linux

I System Call
HIEIIEieE |
1 47

|

0 3 255
| J\)
| |

Software Configurable

Reserved for
the CPU

x86 interrupt overview

coo e

4+ Each type of interrupt is assigned an index from 0—255.

+ 0—31 are for processor interrupts; generally fixed by Intel
+ E.g., 14 is always for page faults

4+ 32—255 are software configured

+ 32—47 are often for device interrupts (IRQs)
+ Most device’s IRQ line can be configured
+ Look up APICs for more info (Ch 4 of Bovet and Cesati)

+ 0x80 issues system call in Linux (more on this later)

Software interrupts

PR 0 Ao

4 The int <num> instruction allows software to raise an
interrupt
4+ 0x80 is just a Linux convention.
+ You could change it to use 0x81!
4 There are a lot of spare indices
+ You could have multiple system call tables for different
purposes or types of processes!

+ Windows does: one for the kernel and one for win32k

Software interrupts, cont

. -
+ OS sets ring level required to raise an interrupt
+ Generally, user programs can’t issue an int 14 (page
fault manually)

+ An unauthorized int instruction causes a general
protection fault

+ Interrupt 13

2/18/13

What happens (generally):

+ Control jumps to the kernel

+ Ata prescribed address (the interrupt handler)

4 The register state of the program is dumped on the kernel’s
stack
+ Sometimes, extra info is loaded into CPU registers

+ E.g., page faults store the address that caused the fault in the
cr2 register

4+ Kernel code runs and handles the interrupt

+ When handler completes, resume program (see iret instr.)

How it works (HW)

+ How does HW know what to execute?

+ Where does the HW dump the registers; what does it use
as the interrupt handler’s stack?

How is this configured?

- -

4+ Kernel creates an array of Interrupt descriptors in

memory, called Interrupt Descriptor Table, or IDT

+ Can be anywhere in physical memory
+ Pointed to by special register (idtr)
+ c.f, segment registers and gdtr and 1dtr

<+ Entry 0 configures interrupt 0, and so on

x86 interrupt table

> *

idtr

N\EIIIIEE |
31 47

255

Address of Interrupt Table

x86 interrupt table

. *

|
0

EEEeHEE e = |
31 47

255
1

Code Segment: Kernel Code

Segment Offset: &page_fault_handler //linear addr
Ring: 0 // kernel

Present: 1

Gate Type: Exception

Interrupt Descriptor

coo oo
+ Code segment selector

+ Almost always the same (kernel code segment)
+ Recall, this was designed before paging on x86!
+ Segment offset of the code to run

+ Kernel segment is “flat”, so this is just the linear address
<+ Privilege Level (ring)

+ Interrupts can be sent directly to user code. Why?
4+ Present bit — disable unused interrupts

Gate type (interrupt or trap/exception) — more in a bit

2/18/13

x86 interrupt table

. > .-

idtr

EEESHEE=EEEE=
47

|
0 3 31

Code Segment: Kernel Code

Segment Offset: &breakpoint_handler //linear addr
Ring: 3 // user

Present: 1

Gate Type: Exception

255

Interrupt Descriptors, ctd.
+ In-memory layout is a bit confusing

+ Like a lot of the x86 architecture, many interfaces were
later deprecated

How it works (HW)

.- >

+ How does HW know what to execute?

<+ Interrupt descriptor table specifies what code to run and at
what privilege
+ This can be set up once during boot for the whole system
+ Where does the HW dump the registers; what does it use
as the interrupt handler’s stack?

4+ Specified in the Task State Segment

Task State Segment (TSS)

e
+ Another magic control block

+ Pointed to by special task register (tr)

+ Actually stored in the segment table (more on segmentation
later)

+ Hardware-specified layout
+ Lots of fields for rarely-used features

+ Two features we care about in a modern OS:

+ 1) Location of kernel stack (fields ss0/esp0)

+ 2)I/0 Port privileges (more in a later lecture)

TSS, cont.

coo coo
4+ Simple model: specify a TSS for each process
<+ Optimization (for a simple uniprocessor OS):

+ Why not just share one TSS and kernel stack per-process?
<+ Linux generalization:

+ One TSS per CPU
+ Modify TSS fields as part of context switching

Summary

e »
+ Most interrupt handling hardware state set during boot
<+ Each interrupt has an IDT entry specifying:

+ What code to execute, privilege level to raise the interrupt
4+ Stack to use specified in the TSS

2/18/13

Lecture outline

ceo ceo
Overview

How interrupts work in hardware

How interrupt handlers work in software
How system calls work

New system call hardware on x86

Interrupt handlers

coo coo
4 Just plain old code in the kernel

+ Sort of like exception handlers in Java
+ But separated from the control flow of the program
+ The IDT stores a pointer to the right handler routine

Lecture outline

ceo ceo
Overview

How interrupts work in hardware

How interrupt handlers work in software
How system calls work

New system call hardware on x86

What is a system call?

coo S
+ A function provided to applications by the OS kernel

+ Generally to use a hardware abstraction (file, socket)
4+ Or OS-provided software abstraction (IPC, scheduling)
+ Why not put these directly in the application?
+ Protection of the OS/hardware from buggy/malicious
programs

+ Applications are not allowed to directly interact with
hardware, or access kernel data structures

System call “interrupt”
oo oo
Originally, system calls issued using int instruction
Dispatch routine was just an interrupt handler
Like interrupts, system calls are arranged in a table

+ See arch/x86/kernel/syscall_table*.S in Linux source
Program selects the one it wants by placing index in eax
register

+ Arguments go in the other registers by calling convention

4+ Return value goes in eax

How many system calls?

oo .o
+ Linux exports about 350 system calls

+ Windows exports about 400 system calls for core APIs,
and another 800 for GUI methods

2/18/13

But why use interrupts?

oo .
+ Also protection
+ Forces applications to call well-defined “public” functions

+ Rather than calling arbitrary internal kernel functions
+ Example:

public foo() {
if (!permission_ok()) return -EPERM;

Calling _foo()

return _foo(); // no permission check directly would
circumvent

permission check

Summary

oo .eo
+ System calls are the “public” OS APIs

Kernel leverages interrupts to restrict applications to
specific functions

4+ Lab 1 hint: How to issue a Linux system call?

+ int $0x80, with system call number in eax register

Lecture outline

oo ..
Overview

How interrupts work in hardware

4+
4
+ How interrupt handlers work in software
+ How system calls work

4+

New system call hardware on x86

Around P4 era...

oo e

4+ Processors got very deeply pipelined
+ Pipeline stalls/flushes became very expensive
+ Cache misses can cause pipeline stalls

+ System calls took twice as long from P3 to P4
+ Why?
+ IDT entry may not be in the cache

+ Different permissions constrain instruction reordering

Idea

L e i

<+ What if we cache the IDT entry for a system call in a
special CPU register?
+ No more cache misses for the IDT!
+ Maybe we can also do more optimizations

4 Assumption: system calls are frequent enough to be
worth the transistor budget to implement this

+ What else could you do with extra transistors that helps
performance?

AMD: syscall/sysreturn

4 These instructions use MSRs (machine specific registers)
to store:

+ Syscall entry point and code segment
+ Kernel stack
4+ Drop-in replacement for int $0x80

+ Longer saga with Intel variant

2/18/13

Aftermath

oo .-
+ Getpid() on my desktop machine (recent AMD 6-core):
+ Int 80: 371 cycles

4 Syscall: 231 cycles
+ So system calls are definitely faster as a result!

InLab 1

oo coo
+ You will use the int instruction to implement system calls

+ You are welcome to use syscall if you prefer

Summary

oo .-
4+ Interrupt handlers are specified in the IDT
<+ Understand how system calls are executed

+ Why interrupts?

+ Why special system call instructions?

