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Background: Control Flow 

// x = 2, y = true 

if (y) { 

 y = 2 / x; 

 printf(x); 

} //... 

void printf(va_args) 
{ 

 //... 

} 

Regular control flow: branches and calls  
       (logically follows source code) 

pc 



Background: Control Flow 

// x = 0, y = true 

if (y) { 

 y = 2 / x; 

 printf(x); 

} //... 

void handle_divzero()
{ 

 y = 2; 

} 

Irregular control flow: exceptions, system calls, etc. 

pc 
Divide by zero! 

Program can’t make 
progress! 



Lecture goal 

ò  Understand the hardware tools available for irregular 
control flow. 

ò  I.e., things other than a branch in a running program 

ò  Building blocks for context switching, device 
management, etc. 



Two types of  interrupts 

ò  Synchronous: will happen every time an instruction 
executes (with a given program state) 

ò  Divide by zero 

ò  System call 

ò  Bad pointer dereference 

ò  Asynchronous: caused by an external event 

ò  Usually device I/O 

ò  Timer ticks (well, clocks can be considered a device) 



Asynchronous Example 

User Kernel 

Stack Stack 

if (x) { 
 printf(“Boo”); 
 ... 

 
printf(va_args…){ 

 ...  

Disk_handler (){ 
 ... 

} 

ESP 

EIP 

ESP 

EIP 

Disk 
Interrupt! 



Intel nomenclature 

ò  Interrupt – only refers to asynchronous interrupts 

ò  Exception – synchronous control transfer 

ò  Note: from the programmer’s perspective, these are 
handled with the same abstractions 



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



Interrupt overview 

ò  Each interrupt or exception includes a number indicating 
its type 

ò  E.g., 14 is a page fault, 3 is a debug breakpoint 

ò  This number is the index into an interrupt table 



x86 interrupt table 

0 255 

… 

31 

… … 

47 

Reserved for 
the CPU 

Software Configurable 

Device IRQs 128 = Linux 
System Call 



x86 interrupt overview 

ò  Each type of  interrupt is assigned an index from 0—255. 

ò  0—31 are for processor interrupts; generally fixed by Intel 

ò  E.g., 14 is always for page faults 

ò  32—255 are software configured 

ò  32—47 are often for device interrupts (IRQs) 

ò  Most device’s IRQ line can be configured  

ò  Look up APICs for more info (Ch 4 of  Bovet and Cesati) 

ò  0x80 issues system call in Linux (more on this later) 



Software interrupts 

ò  The int <num> instruction allows software to raise an 
interrupt 

ò  0x80 is just a Linux convention.   

ò  You could change it to use 0x81! 

ò  There are a lot of  spare indices 

ò  You could have multiple system call tables for different 
purposes or types of  processes! 

ò  Windows does: one for the kernel and one for win32k 



Software interrupts, cont 

ò  OS sets ring level required to raise an interrupt 

ò  Generally, user programs can’t issue an int 14 (page 
fault manually) 

ò  An unauthorized int instruction causes a general 
protection fault 

ò  Interrupt 13 



What happens (generally): 

ò  Control jumps to the kernel 

ò  At a prescribed address (the interrupt handler) 

ò  The register state of  the program is dumped on the kernel’s 
stack 

ò  Sometimes, extra info is loaded into CPU registers 

ò  E.g., page faults store the address that caused the fault in the 
cr2 register 

ò  Kernel code runs and handles the interrupt 

ò  When handler completes, resume program (see iret instr.) 



How it works (HW) 

ò  How does HW know what to execute? 

ò  Where does the HW dump the registers; what does it use 
as the interrupt handler’s stack? 



How is this configured? 

ò  Kernel creates an array of  Interrupt descriptors in 
memory, called Interrupt Descriptor Table, or IDT 

ò  Can be anywhere in physical memory 

ò  Pointed to by special register (idtr) 

ò  c.f., segment registers and gdtr and ldtr!

ò  Entry 0 configures interrupt 0, and so on 



x86 interrupt table 

0 255 

… 

31 

… … 

47 

idtr 

Address of  Interrupt Table 



x86 interrupt table 

0 255 

… 

31 

… … 

47 

idtr 

Code Segment: Kernel Code 
Segment Offset: &page_fault_handler //linear addr 
Ring: 0 // kernel 
Present: 1  
Gate Type: Exception 
 

14 



Interrupt Descriptor 

ò  Code segment selector 

ò  Almost always the same (kernel code segment) 

ò  Recall, this was designed before paging on x86! 

ò  Segment offset of  the code to run 

ò  Kernel segment is “flat”, so this is just the linear address 

ò  Privilege Level (ring) 

ò  Interrupts can be sent directly to user code.  Why? 

ò  Present bit – disable unused interrupts 

ò  Gate type (interrupt or trap/exception) – more in a bit 



x86 interrupt table 

0 255 

… 

31 

… … 

47 

idtr 

Code Segment: Kernel Code 
Segment Offset: &breakpoint_handler //linear addr 
Ring: 3 // user 
Present: 1  
Gate Type: Exception 
 

3 



Interrupt Descriptors, ctd. 

ò  In-memory layout is a bit confusing 

ò  Like a lot of  the x86 architecture, many interfaces were 
later deprecated 



How it works (HW) 

ò  How does HW know what to execute? 

ò  Interrupt descriptor table specifies what code to run and at 
what privilege 

ò  This can be set up once during boot for the whole system 

ò  Where does the HW dump the registers; what does it use 
as the interrupt handler’s stack? 

ò  Specified in the Task State Segment 



Task State Segment (TSS) 

ò  Another magic control block 

ò  Pointed to by special task register (tr) 

ò  Actually stored in the segment table (more on segmentation 
later) 

ò  Hardware-specified layout 

ò  Lots of  fields for rarely-used features 

ò  Two features we care about in a modern OS: 

ò  1) Location of  kernel stack (fields ss0/esp0) 

ò  2) I/O Port privileges (more in a later lecture) 



TSS, cont. 

ò  Simple model: specify a TSS for each process 

ò  Optimization (for a simple uniprocessor OS):  

ò  Why not just share one TSS and kernel stack per-process? 

ò  Linux generalization: 

ò  One TSS per CPU 

ò  Modify TSS fields as part of  context switching 



Summary 

ò  Most interrupt handling hardware state set during boot 

ò  Each interrupt has an IDT entry specifying: 

ò  What code to execute, privilege level to raise the interrupt 

ò  Stack to use specified in the TSS 



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



Interrupt handlers 

ò  Just plain old code in the kernel 

ò  Sort of  like exception handlers in Java 

ò  But separated from the control flow of  the program 

ò  The IDT stores a pointer to the right handler routine 



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



What is a system call? 

ò  A function provided to applications by the OS kernel 

ò  Generally to use a hardware abstraction (file, socket) 

ò  Or OS-provided software abstraction (IPC, scheduling) 

ò  Why not put these directly in the application? 

ò  Protection of  the OS/hardware from buggy/malicious 
programs 

ò  Applications are not allowed to directly interact with 
hardware, or access kernel data structures 



System call “interrupt” 

ò  Originally, system calls issued using int instruction 

ò  Dispatch routine was just an interrupt handler 

ò  Like interrupts, system calls are arranged in a table 

ò  See arch/x86/kernel/syscall_table*.S in Linux source 

ò  Program selects the one it wants by placing index in eax 
register 

ò  Arguments go in the other registers by calling convention 

ò  Return value goes in eax!



How many system calls? 

ò  Linux exports about 350 system calls 

ò  Windows exports about 400 system calls for core APIs, 
and another 800 for GUI methods 



But why use interrupts? 

ò  Also protection 

ò  Forces applications to call well-defined “public” functions 

ò  Rather than calling arbitrary internal kernel functions 

ò  Example: 

public foo() { 

 if  (!permission_ok()) return –EPERM; 

 return _foo(); // no permission check 

}  

Calling _foo() 
directly would 

circumvent 
permission check 



Summary 

ò  System calls are the “public” OS APIs 

ò  Kernel leverages interrupts to restrict applications to 
specific functions 

ò  Lab 1 hint: How to issue a Linux system call? 

ò  int $0x80, with system call number in eax register 



Lecture outline 

ò  Overview 

ò  How interrupts work in hardware 

ò  How interrupt handlers work in software 

ò  How system calls work 

ò  New system call hardware on x86 



Around P4 era… 

ò  Processors got very deeply pipelined 

ò  Pipeline stalls/flushes became very expensive 

ò  Cache misses can cause pipeline stalls 

ò  System calls took twice as long from P3 to P4 

ò  Why? 

ò  IDT entry may not be in the cache 

ò  Different permissions constrain instruction reordering 



Idea 

ò  What if  we cache the IDT entry for a system call in a 
special CPU register? 

ò  No more cache misses for the IDT! 

ò  Maybe we can also do more optimizations 

ò  Assumption: system calls are frequent enough to be 
worth the transistor budget to implement this 

ò  What else could you do with extra transistors that helps 
performance? 



AMD: syscall/sysreturn 

ò  These instructions use MSRs (machine specific registers) 
to store: 

ò  Syscall entry point and code segment 

ò  Kernel stack 

ò  Drop-in replacement for int $0x80 

ò  Longer saga with Intel variant 



Aftermath 

ò  Getpid() on my desktop machine (recent AMD 6-core): 

ò  Int 80: 371 cycles 

ò  Syscall: 231 cycles 

ò  So system calls are definitely faster as a result! 



In Lab 1 

ò  You will use the int instruction to implement system calls 

ò  You are welcome to use syscall if  you prefer 



Summary 

ò  Interrupt handlers are specified in the IDT 

ò  Understand how system calls are executed 

ò  Why interrupts? 

ò  Why special system call instructions? 


