
Interrupts and System
Calls
Don Porter

CSE 306

Background: Control Flow

// x = 2, y = true

if (y) {

 y = 2 / x;

 printf(x);

} //...

void printf(va_args)
{

 //...

}

Regular control flow: branches and calls
 (logically follows source code)

pc

Background: Control Flow

// x = 0, y = true

if (y) {

 y = 2 / x;

 printf(x);

} //...

void handle_divzero()
{

 y = 2;

}

Irregular control flow: exceptions, system calls, etc.

pc
Divide by zero!

Program can’t make
progress!

Lecture goal

ò  Understand the hardware tools available for irregular
control flow.

ò  I.e., things other than a branch in a running program

ò  Building blocks for context switching, device
management, etc.

Two types of interrupts

ò  Synchronous: will happen every time an instruction
executes (with a given program state)

ò  Divide by zero

ò  System call

ò  Bad pointer dereference

ò  Asynchronous: caused by an external event

ò  Usually device I/O

ò  Timer ticks (well, clocks can be considered a device)

Asynchronous Example

User Kernel

Stack Stack

if (x) {
 printf(“Boo”);
 ...

printf(va_args…){

 ...

Disk_handler (){
 ...

}

ESP

EIP

ESP

EIP

Disk
Interrupt!

Intel nomenclature

ò  Interrupt – only refers to asynchronous interrupts

ò  Exception – synchronous control transfer

ò  Note: from the programmer’s perspective, these are
handled with the same abstractions

Lecture outline

ò  Overview

ò  How interrupts work in hardware

ò  How interrupt handlers work in software

ò  How system calls work

ò  New system call hardware on x86

Interrupt overview

ò  Each interrupt or exception includes a number indicating
its type

ò  E.g., 14 is a page fault, 3 is a debug breakpoint

ò  This number is the index into an interrupt table

x86 interrupt table

0 255

…

31

… …

47

Reserved for
the CPU

Software Configurable

Device IRQs 128 = Linux
System Call

x86 interrupt overview

ò  Each type of interrupt is assigned an index from 0—255.

ò  0—31 are for processor interrupts; generally fixed by Intel

ò  E.g., 14 is always for page faults

ò  32—255 are software configured

ò  32—47 are often for device interrupts (IRQs)

ò  Most device’s IRQ line can be configured

ò  Look up APICs for more info (Ch 4 of Bovet and Cesati)

ò  0x80 issues system call in Linux (more on this later)

Software interrupts

ò  The int <num> instruction allows software to raise an
interrupt

ò  0x80 is just a Linux convention.

ò  You could change it to use 0x81!

ò  There are a lot of spare indices

ò  You could have multiple system call tables for different
purposes or types of processes!

ò  Windows does: one for the kernel and one for win32k

Software interrupts, cont

ò  OS sets ring level required to raise an interrupt

ò  Generally, user programs can’t issue an int 14 (page
fault manually)

ò  An unauthorized int instruction causes a general
protection fault

ò  Interrupt 13

What happens (generally):

ò  Control jumps to the kernel

ò  At a prescribed address (the interrupt handler)

ò  The register state of the program is dumped on the kernel’s
stack

ò  Sometimes, extra info is loaded into CPU registers

ò  E.g., page faults store the address that caused the fault in the
cr2 register

ò  Kernel code runs and handles the interrupt

ò  When handler completes, resume program (see iret instr.)

How it works (HW)

ò  How does HW know what to execute?

ò  Where does the HW dump the registers; what does it use
as the interrupt handler’s stack?

How is this configured?

ò  Kernel creates an array of Interrupt descriptors in
memory, called Interrupt Descriptor Table, or IDT

ò  Can be anywhere in physical memory

ò  Pointed to by special register (idtr)

ò  c.f., segment registers and gdtr and ldtr!

ò  Entry 0 configures interrupt 0, and so on

x86 interrupt table

0 255

…

31

… …

47

idtr

Address of Interrupt Table

x86 interrupt table

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code
Segment Offset: &page_fault_handler //linear addr
Ring: 0 // kernel
Present: 1
Gate Type: Exception

14

Interrupt Descriptor

ò  Code segment selector

ò  Almost always the same (kernel code segment)

ò  Recall, this was designed before paging on x86!

ò  Segment offset of the code to run

ò  Kernel segment is “flat”, so this is just the linear address

ò  Privilege Level (ring)

ò  Interrupts can be sent directly to user code. Why?

ò  Present bit – disable unused interrupts

ò  Gate type (interrupt or trap/exception) – more in a bit

x86 interrupt table

0 255

…

31

… …

47

idtr

Code Segment: Kernel Code
Segment Offset: &breakpoint_handler //linear addr
Ring: 3 // user
Present: 1
Gate Type: Exception

3

Interrupt Descriptors, ctd.

ò  In-memory layout is a bit confusing

ò  Like a lot of the x86 architecture, many interfaces were
later deprecated

How it works (HW)

ò  How does HW know what to execute?

ò  Interrupt descriptor table specifies what code to run and at
what privilege

ò  This can be set up once during boot for the whole system

ò  Where does the HW dump the registers; what does it use
as the interrupt handler’s stack?

ò  Specified in the Task State Segment

Task State Segment (TSS)

ò  Another magic control block

ò  Pointed to by special task register (tr)

ò  Actually stored in the segment table (more on segmentation
later)

ò  Hardware-specified layout

ò  Lots of fields for rarely-used features

ò  Two features we care about in a modern OS:

ò  1) Location of kernel stack (fields ss0/esp0)

ò  2) I/O Port privileges (more in a later lecture)

TSS, cont.

ò  Simple model: specify a TSS for each process

ò  Optimization (for a simple uniprocessor OS):

ò  Why not just share one TSS and kernel stack per-process?

ò  Linux generalization:

ò  One TSS per CPU

ò  Modify TSS fields as part of context switching

Summary

ò  Most interrupt handling hardware state set during boot

ò  Each interrupt has an IDT entry specifying:

ò  What code to execute, privilege level to raise the interrupt

ò  Stack to use specified in the TSS

Lecture outline

ò  Overview

ò  How interrupts work in hardware

ò  How interrupt handlers work in software

ò  How system calls work

ò  New system call hardware on x86

Interrupt handlers

ò  Just plain old code in the kernel

ò  Sort of like exception handlers in Java

ò  But separated from the control flow of the program

ò  The IDT stores a pointer to the right handler routine

Lecture outline

ò  Overview

ò  How interrupts work in hardware

ò  How interrupt handlers work in software

ò  How system calls work

ò  New system call hardware on x86

What is a system call?

ò  A function provided to applications by the OS kernel

ò  Generally to use a hardware abstraction (file, socket)

ò  Or OS-provided software abstraction (IPC, scheduling)

ò  Why not put these directly in the application?

ò  Protection of the OS/hardware from buggy/malicious
programs

ò  Applications are not allowed to directly interact with
hardware, or access kernel data structures

System call “interrupt”

ò  Originally, system calls issued using int instruction

ò  Dispatch routine was just an interrupt handler

ò  Like interrupts, system calls are arranged in a table

ò  See arch/x86/kernel/syscall_table*.S in Linux source

ò  Program selects the one it wants by placing index in eax
register

ò  Arguments go in the other registers by calling convention

ò  Return value goes in eax!

How many system calls?

ò  Linux exports about 350 system calls

ò  Windows exports about 400 system calls for core APIs,
and another 800 for GUI methods

But why use interrupts?

ò  Also protection

ò  Forces applications to call well-defined “public” functions

ò  Rather than calling arbitrary internal kernel functions

ò  Example:

public foo() {

 if (!permission_ok()) return –EPERM;

 return _foo(); // no permission check

}

Calling _foo()
directly would

circumvent
permission check

Summary

ò  System calls are the “public” OS APIs

ò  Kernel leverages interrupts to restrict applications to
specific functions

ò  Lab 1 hint: How to issue a Linux system call?

ò  int $0x80, with system call number in eax register

Lecture outline

ò  Overview

ò  How interrupts work in hardware

ò  How interrupt handlers work in software

ò  How system calls work

ò  New system call hardware on x86

Around P4 era…

ò  Processors got very deeply pipelined

ò  Pipeline stalls/flushes became very expensive

ò  Cache misses can cause pipeline stalls

ò  System calls took twice as long from P3 to P4

ò  Why?

ò  IDT entry may not be in the cache

ò  Different permissions constrain instruction reordering

Idea

ò  What if we cache the IDT entry for a system call in a
special CPU register?

ò  No more cache misses for the IDT!

ò  Maybe we can also do more optimizations

ò  Assumption: system calls are frequent enough to be
worth the transistor budget to implement this

ò  What else could you do with extra transistors that helps
performance?

AMD: syscall/sysreturn

ò  These instructions use MSRs (machine specific registers)
to store:

ò  Syscall entry point and code segment

ò  Kernel stack

ò  Drop-in replacement for int $0x80

ò  Longer saga with Intel variant

Aftermath

ò  Getpid() on my desktop machine (recent AMD 6-core):

ò  Int 80: 371 cycles

ò  Syscall: 231 cycles

ò  So system calls are definitely faster as a result!

In Lab 1

ò  You will use the int instruction to implement system calls

ò  You are welcome to use syscall if you prefer

Summary

ò  Interrupt handlers are specified in the IDT

ò  Understand how system calls are executed

ò  Why interrupts?

ò  Why special system call instructions?

