

Don Porter

Paperwork

- I am handing out a survey on your background as well as an intellectual honesty policy statement.
- * Fill both out and return them before you leave
 - ♦ More in a bit

What is an OS?

- All of the stuff between you/your application and the hardware
 - → Kernel
 - ♦ Device Drivers
 - ♦ API libraries
- Our focus is mostly on the kernel, with some attention to the others

Why Operating Systems?

- * Primary Goal: Demystify how computers work
 - * Lots of abstractions and heuristics between your application and the hardware
 - A good computer scientist should understand what happens inside the system when one types a command
- * Secondary: Learn how to write robust programs
 - ♦ OSes like Linux have many users and work on a wide range of hardware
 - ♦ Deal with subtle issues: concurrency, consistency, etc.

Labs: Learn by doing

- ♦ This course is coding intensive
 - * You should know C, or be prepared to remediate quickly
 - ♦ You will learn basic, inline x86 assembly
 - ✦ You must learn on your own/with lab partner
- ♦ You will write substantial applications in C
- Final project will involve substantial modifications to the Linux kernel
 - Challenging, but a very marketable skill

Lab Teams

- * Lab 1: Everyone does this lab alone
- ♦ Lab 2 and 3: May work with a partner or alone
- * Lab 4: May work in a team up to 4 students

Lab Teams

- + Can work alone, but better with help
 - ♦ No need to be a hero
- ♦ Choose your own partners
 - ♦ Course mailing list good for finding them
- * Same for entire course
 - ♦ Changes only with instructor permission
 - \star For lab 4, you can only join with another team

Challenge Problems

- Each lab may include challenge problems, which you may complete for bonus points (generally 5—10 points out of 100)
 - ♦ Unwise to turn in a lab late to do challenge problems
 - ★ Can complete challenge problems at any point in the semester—even on old labs
- Indicate any challenge problems completed in challenge.txt file

Required Readings

- * Primarily from the class textbook
- ♦ Should be completed before the lecture
- Required reading material may appear on the exams, even if not discussed in lecture
- * Several recommended texts will be posted
 - ♦ Several free on SBU safari online site
 - * Papers you can print out or read electronically
 - ♦ Others on reserve at library

Lectures

- * Discuss and supplement reading material
- * An important chance to clarify issues
 - * Questions are encouraged!
- I expect you to arrive prepared to answer and ask questions about the reading material
- Everything in lectures may appear on the exams, even if not in the book

Prerequisites

- + CSE 219 (CS III) or CSE 260 (CS B, Honors)
- CSE 220 (Systems-level Programming) or ESE 380 (Embedded Microprocessor Design I)
- * The background courses are necessary
- * In some cases, industry experience is ok
 - * In-class quiz, due before you leave
 - → If you can't answer 50% of these questions you are not prepared
- + C programming
- Basic Unix command-line proficiency

C Programming

- * You should have learned C in the prerequisite courses
- If you have not and want to take the course, you should read "The C Programming Language" by Kernighan and Ritchie cover to cover this week
 - * And complete all exercises in the book
- If you can do this, you will be prepared to complete this course on schedule

Course email list

- Sign up at http://lists.cs.stonybrook.edu/mailman/listinfo/cse306
- + This is the primary announcement medium
- * And for discussions about course work
 - ♦ Do not post code here or other solutions
 - * Goal: Everyone can learn from general questions
- Material discussed on the mailing list can be an exam question

Other administrative notes

- * Read syllabus completely
- * Subscribe to the class mailing list
- * 2 exams cover: lectures, labs, mailing list
- * Every student will get a VM for lab work
 - * You may use your own computer, staff can't support it
- * All staff email goes to cse306ta@cs.stonybrook.edu
 - * Except private issues for instructor only

Special Offer!

- + You can write your own exam questions
 - $\ensuremath{\bigstar}$ Send them to me in advance of the test, if I like them, I will use them
 - ♦ Do NOT share with anyone else

VM Assignments

- * Your VM is cse306-USER, where USER is your netid
- * Each VM is hosted on the server esx1sc---esx4sc
 - ★ You should receive an email with your server and initial password
- ♦ The account is csec06
- * Once it is powered on, it will listen for ssh on port 130
- ♦ Change the password immediately

Academic Integrity

- * I take cheating very seriously. It can end your career.
- ♦ In a gray area, it is your job to stay on right side of line
- Never show your code to anyone except your partner and course staff
- ♦ Never look at anyone else's code (incl. other universities)
- + Do not discuss code; do not debug each other's code
- ♦ Acknowledge students that give you good ideas

Why do we care?

- * Analogy: This is the programming dojo
 - + If you don't do your exercises, you will be unprepared for battle
 - * You've wasted your money and both of our time
 - $\ensuremath{\bigstar}$. It brings dishonor on the dojo when you lose every battle
- * Similarly, a lot of what I have to teach (and what will make you a valuable employee when you graduate) has no short cut
 - + How do you learn to punch through a board?
 - ♦ You punch a board over and over until your fist goes through it

Productive Frustration

- One of the "meta skills" that distinguishes an excellent programmer is the ability to get un-stuck
 - * Fixing a "heisenbug" has this property
- + How do you learn this skill?
 - ♦ Get stuck on a hard, but solvable problem
 - → Learn which strategies will get you moving again
- If you take a quick cheat, you won't learn the skills to solve truly hard problems

Integrity Handout

- ★ Each of you must initial each bullet on the integrity handout and sign at the bottom
- → I need a record that you have read and understood the policies of this course
- I will not grade your assignments or assign a final grade until I have received this from you
- ♦ I will check this

Lateness

- * Each student gets 72 late hours
 - ♦ List how many you use in slack.txt
 - Each day after these are gone costs a full letter grade on the assignment
 - \star If you work in a team, each member loses 1 hour for each hour late
- * It is your responsibility to use these to manage:
 - + Holidays, weddings, research deadlines, conference travel, Buffy marathons, release of the next Zelda game, etc.
- 3 Exceptions: illness (need doctor's note), death in immediate family, accommodation for disability

Lab 1 assigned

- ♦ Due Friday, 2/15 at 11:59 pm, eastern.
- ♦ Instructions on website
- * Start early!

Getting help

- * TA's will keep office hours (TBD)
 - * Sourabh and Nipun
 - ♦ Very knowledgeable and friendly grad students
- ♦ Instructor keeps office hours
 - Note that "by appointment" means more time available on demand

Questions?

- * Remember:
 - ♦ Hand-in survey and honesty policy
 - + Assignment 1 out (work alone)
 - * Reading assigned for Thursday