
Intro to Linux Kernel
Programming

Don Porter

Lab 4

ò  You will write a Linux kernel module

ò  Linux is written in C, but does not include all standard
libraries

ò  And some other idiosyncrasies

ò  This lecture will give you a crash course in writing Linux
kernel code

Kernel Modules

ò  Sort of like a dynamically linked library

ò  How different?

ò  Not linked at load (boot) time

ò  Loaded dynamically

ò  Often in response to realizing a particular piece of hardware
is present on the system

ò  For more, check out udev and lspci

ò  Built with .ko extension (kernel object), but still an ELF
binary

Kernel Modules, cont.

ò  Load a module

ò  insmod – Just load it

ò  modprobe – Do some dependency checks

ò  Examples?

ò  rmmod – Remove a module

ò  Module internally has init and exit routines, which can
in turn create device files or otherwise register other call
back functions

Events and hooks

ò  When you write module code, there isn’t a main()
routine, just init()

ò  Most kernel code is servicing events---either from an
application or hardware

ò  Thus, most modules will either create a device file,
register a file system type, network protocol, or other
event that will lead to further callbacks to its functions

Kernel Modules, cont.

ò  When a module is loaded, it runs in the kernel’s address
space

ò  And in ring 0

ò  So what does this say about trust in this code?

ò  It is completely trusted as part of the kernel

ò  And if this code has a bug?

ò  It can crash the kernel

Accessing Kernel
Functions

ò  Linux defines public and private functions (similar to Java)

ò  Look for “EXPORT_SYMBOL” in the Linux source

ò  Kernel exports a “jump table” with the addresses of public
functions

ò  At load time, module’s jump table is connected with kernel
jump table

ò  But what prevents a module from using a “private” function?

ò  Nothing, except it is a bit more work to find the right address

ò  Example code to do this in the lab4 handout

Kernel Programming

ò  Big difference: No standard C library!

ò  Sound familiar from lab 1?

ò  Why no libc?

ò  But some libc-like interfaces

ò  malloc -> kmalloc

ò  printf(“boo”) -> printk(KERN_ERR “boo”)

ò  Some things are missing, like floating point division

Kernel Programming, ctd

ò  Stack can’t grow dynamically

ò  Generally limited to 4 or 8KB

ò  So avoid deep recursion, stack allocating substantial
buffers, etc.

ò  Why not?

ò  Mostly for simplicity, and to keep per-thread memory
overheads down

ò  Also, the current task struct can be found by rounding
down the stack pointer (esp/rsp)

Validating inputs
super-important!

ò  Input parsing bugs can crash or compromise entire OS!

ò  Example: Pass read() system call a null pointer for buffer

ò  OS needs to validate that buffer is really mapped

ò  Tools: copy_form_user(), copy_to_user(), access_ok(),
etc.

Cleaning up

ò  After an error, you have to be careful to put things back
the way you found them (generally in reverse order)

ò  Release locks, free memory, decrement ref counts, etc.

ò  The _one_ acceptable use of goto is to compensate for
the lack of exceptions in C

Clean Up Example

 str = getname(name);
 if (IS_ERR(str)) {
 err = -EFAULT;
 printk (KERN_DEBUG "hash_name: getname(str) error!\n");
 goto out;
 }

 if (!access_ok(VERIFY_WRITE, hash, HASH_BYTES)) {
 err = -EFAULT;
 printk (KERN_DEBUG "hash_name: access_ok(hash) error!\n");
 goto putname_out;
 }

 // helper function does all the work here
putname_out:
 putname(str);
out:
 return err;
}

Key objects

ò  task_struct – a kernel-schedulable thread

ò  current points to the current task

ò  inode and dentry – refer to a file’s inode and dentry, as
discussed in the VFS lectures

ò  Handy to find these by calling helper functions in the fs
directory

ò  Read through open and friends

Object-orientation in the
VFS

ò  Files have a standard set of operations

ò  Read, write, truncate, etc.

ò  Each inode includes a pointer to a ‘file_operations’ struct

ò  Which in turn points to a lot of functions

ò  VFS code is full of things like this:

ò  int rv = inode->f_op->stat(inode, statbuf);

OO, cont.

ò  When an inode is created for a given file system, the file
system initializes the file_operation structure

ò  For lab 4, you may find it handy to modify/replace a
given file’s file_operation structure

/proc

ò  The kernel exports a lot of statistics, configuration data,
etc. via this pseudo-file system

ò  These “files” are not stored anywhere on any disk

ò  The kernel just creates a bunch of inodes/dentries

ò  And provides read/write and other file_operations hooks
that are backed by kernel-internal functions

ò  Check out fs/proc source code

Logs?

ò  The kernel log goes into /var/log/dmesg by default

ò  And to the console

ò  Visible in vsphere for your VM

ò  Also dumped by the dmesg command

ò  printk is your friend for debugging!

Verbosity

ò  The kernel is dynamically configured with a given level
of verbosity in the logs

ò  The first argument to printk is the importance level

ò  printk(KERN_ERR “I am serious”);

ò  printk(KERN_INFO “I can be filtered”);

ò  This style creates an integer that is placed at the front of
the character array, and transparently filtered

ò  For your debugging, just use a high importance level

Lists

ò  Linux embeds lists and other data structures in the
objects, rather than dynamically allocate list nodes

ò  Check out include/linux/list.h

ò  It has nice-looking macro loops like list_for_each_entry

ò  In each iteration, it actually uses compiler macros to
figure out the offset from a next pointer to the “top” of a
struct

Assertions

ò  BUG_ON(condition)

ò  Use this.

ò  How does it work?

ò  if (!condition) crash the kernel;

ò  It actually uses the ‘ud2a’ instruction, which is a
purposefully undefined x86 instruction that will cause a
trap

ò  The trap handler can unpack a more detailed crash report

Other tips

ò  Snapshot your VM for quick recreation if the file system
is corrupted

ò  Always save your code on another machine before
testing

ò  git push is helpful for this

ò  Write defensively: lots of test cases and assertions, test
each line you write carefully

ò  Anything you guess might be true, add an assertion

Good luck!

