
Kernel Rootkits
Don Porter

Motivation (bad guys)

ò  Why take over a computer system?

ò  To get it to do (potentially illicit) work for you for free!

ò  E.g., send spam

Stages of an attack

ò  Get on the system

ò  Get administrator privilege

ò  Install your software, and possibly a way to get back in
later

How does one get in?

ò  Common attack vectors:

ò  Take over an account

ò  Weak passwords

ò  Colluding, legitimate user

ò  Exploit a bug in a network service

ò  E.g., buffer overflow, shell code injection

ò  These can be trickier to pull off

How does one get
privilege?

ò  For free

ò  Attack a network service with root privilege (ssh)

ò  Or take over an account with ‘sudo’ permission

ò  Or, find an exploitable bug in a privileged service on the
system

ò  Setuid binaries and system daemons common targets

ò  Input parsing bugs, time-of-check-to-time-of-use
(TOCTTOU) race conditions

How to come back later?

ò  These attacks are elaborate (a lot of hassle)

ò  And vulnerabilities could be patched by an upgrade

ò  Ideas?

ò  Install an ssh or telnet daemon that uses different
credentials, listens on an unusual port, etc.

ò  A.k.a. a “back door” into the system

ò  No fuss, no hassle to come back later

Problem?

ò  What if the administrator discovers your malware, or
your back door?

ò  This is where rootkits generally come in---they hide the
malware from the administrator

High-level Goal

ò  Hide all traces of malware

ò  ‘ls’ doesn’t show the binary files

ò  ‘ps’ doesn’t show running processes

ò  ‘lsmod’ doesn’t show the rootkit

ò  Hard to leave no trace

ò  E.g., system is slow, but ‘top’ says completely idle

ò  Also, need to be persistent across reboots

ò  Usually a (hidden) init script to reload the rootkit

Strategies

ò  Suggestions?

Common strategies

ò  Replace entries in the system call table

ò  Filter return values

ò  Replace function pointers on file inodes

ò  E.g., filter readdir output

ò  Replace libc in user level

ò  Actually overwrite the first instruction of a kernel
function with a jump to other code

How to mitigate this?

Countermeasures

ò  Generally enforced in a hypervisor/VMM

ò  Mark kernel code pages as read only

ò  Look for inconsistencies in function pointers, etc.

Another way to think
about the problem

ò  This is really an issue of code integrity

ò  In other words, by changing key data structures or code
modules, the attacker violates an assumed invariant of
the rest of the code

ò  Most countermeasures attempt to prevent or detect
broken invariants

Example: File integrity
checks

ò  Have a database of file checksums on read-only media or
another system

ò  Periodically check the file system for checksum changes

ò  When the system is powered down, if necessary

Example 2: OSck

ò  The hypervisor creates a “sibling” VM that has a read-
only view of kernel data

ò  Developer specifies a bunch of data structure invariants

ò  All tasks should be in the scheduler queue and in /proc

ò  All inodes on an ext4 FS should point to an ext4
operations struct

ò  Sibling VM periodically walks all kernel data structures,
checking for inconsistencies

Summary

ò  Rootkits hide the presence of other malware

ò  Lab 4: You will build one to hide some “fake” malware

ò  Ultimately work by undermining an assumption in the
running code (integrity)

ò  Most countermeasures focus on detecting inconsistencies
or changes in the system

