H WA ¢ ,,qZ..,\.
e 4 "
&) ,w
D
o | » oy -
: - * «.AJ Y,
t ,
. ! A
+ b
4\ :
™ >

” o ‘...,,¢.0>

4 S 4

£ ﬂ
. r &

4 Lo
AN e
s ;

ol
‘f.ﬂ - s »
i ;
B
] ¥ b g
. )
-
LY
> "
Y
Lol

T .

. .' - ot { w
- Gy
! & g

4 . Y

_ W
a1 ‘ @
i .
| A
ol \‘V.r -

- . o
)‘ + N

- s
| o 1 -
% ——l .
¢ . *8

I VFaat a2 Y/7at a2k a2t 2




Motivation (bad guys)

+ Why take over a computer system?

To get 1t to do (potentially illicit) work for you for free!
E.g., send spam



Stages of an attack

+ Get on the system
+ Get administrator privilege

+ Install your software, and possibly a way to get back in
later



How does one get 1n?

<+ Common attack vectors:

Take over an account

+ Weak passwords

+ Colluding, legitimate user
Exploit a bug in a network service

+ E.g., buffer overflow, shell code injection

+ These can be trickier to pull off



How does one get
privilege?

<+ For free

Attack a network service with root privilege (ssh)
Or take over an account with ‘sudo’ permission
+ Or, find an exploitable bug in a privileged service on the
system

Setuid binaries and system daemons common targets

Input parsing bugs, time-of-check-to-time-of-use
(TOCTTOU) race conditions



How to come back later?

+ These attacks are elaborate (a lot of hassle)

And vulnerabilities could be patched by an upgrade
+ Ideas?

Install an ssh or telnet daemon that uses different
credentials, listens on an unusual port, etc.

A k.a. a “back door” into the system

No fuss, no hassle to come back later



Problem?

+ What if the administrator discovers your malware, or
your back door?

+ This 1s where rootkits generally come in---they hide the
malware from the administrator



High-level Goal

<+ Hide all traces of malware

‘I’ doesn’t show the binary files
‘ps’ doesn’t show running processes

‘Ismod’ doesn’t show the rootkit

<+ Hard to leave no trace

E.g., system is slow, but ‘top’ says completely idle

+ Also, need to be persistent across reboots

Usually a (hidden) init script to reload the rootkit



Strategies

= = ogeo

+ Suggestions?




Common strategies

+ Replace entries in the system call table

Filter return values

+ Replace function pointers on file inodes

E.g., filter readdir output

+ Replace libc 1n user level

+ Actually overwrite the first instruction of a kernel
function with a jump to other code



How to mitigate this?




Countermeasures

+ Generally enforced 1n a hypervisor/VMM
+ Mark kernel code pages as read only

+ Look for inconsistencies in function pointers, etc.



Another way to think
about the problem

This 1s really an 1ssue of code integrity

In other words, by changing key data structures or code
modules, the attacker violates an assumed 1mvariant of
the rest of the code

Most countermeasures attempt to prevent or detect
broken invariants



Example: File integrity
checks

+ Have a database of file checksums on read-only media or
another system

+ Periodically check the file system for checksum changes

When the system is powered down, if necessary



Example 2: OSck

The hypervisor creates a “sibling” VM that has a read-
only view of kernel data

Developer specifies a bunch of data structure invariants

All tasks should be in the scheduler queue and 1n /proc

All inodes on an ext4 FS should point to an ext4
operations struct

Sibling VM periodically walks all kernel data structures,
checking for inconsistencies



Summary

Rootkits hide the presence of other malware

Lab 4: You will build one to hide some “fake” malware
Ultimately work by undermining an assumption in the
running code (1ntegrity)

Most countermeasures focus on detecting inconsistencies
or changes in the system



