
Scheduling
Don Porter

CSE 306

Last time

ò  We went through the high-level theory of scheduling
algorithms

ò  Today: View into how Linux makes its scheduling
decisions

Lecture goals

ò  Understand low-level building blocks of a scheduler

ò  Understand competing policy goals

ò  Understand the O(1) scheduler

ò  CFS next lecture

ò  Familiarity with standard Unix scheduling APIs

(Linux) Terminology
Review

ò  mm_struct – represents an address space in kernel

ò  task – represents a thread in the kernel

ò  A task points to 0 or 1 mm_structs

ò  Kernel threads just “borrow” previous task’s mm, as they
only execute in kernel address space

ò  Many tasks can point to the same mm_struct

ò  Multi-threading

ò  Quantum – CPU timeslice

Outline

ò  Policy goals (review)

ò  O(1) Scheduler

ò  Scheduling interfaces

Policy goals

ò  Fairness – everything gets a fair share of the CPU

ò  Real-time deadlines

ò  CPU time before a deadline more valuable than time after

ò  Latency vs. Throughput: Timeslice length matters!

ò  GUI programs should feel responsive

ò  CPU-bound jobs want long timeslices, better throughput

ò  User priorities

ò  Virus scanning is nice, but I don’t want it slowing things down

No perfect solution

ò  Optimizing multiple variables

ò  Like memory allocation, this is best-effort

ò  Some workloads prefer some scheduling strategies

ò  Nonetheless, some solutions are generally better than
others

Outline

ò  Policy goals

ò  O(1) Scheduler

ò  Scheduling interfaces

O(1) scheduler

ò  Goal: decide who to run next, independent of number of
processes in system

ò  Still maintain ability to prioritize tasks, handle partially
unused quanta, etc

O(1) Bookkeeping

ò  runqueue: a list of runnable processes

ò  Blocked processes are not on any runqueue

ò  A runqueue belongs to a specific CPU

ò  Each task is on exactly one runqueue

ò  Task only scheduled on runqueue’s CPU unless migrated

ò  2 *40 * #CPUs runqueues

ò  40 dynamic priority levels (more later)

ò  2 sets of runqueues – one active and one expired

O(1) Data Structures

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

O(1) Intuition

ò  Take the first task off the lowest-numbered runqueue on
active set

ò  Confusingly: a lower priority value means higher priority

ò  When done, put it on appropriate runqueue on expired
set

ò  Once active is completely empty, swap which set of
runqueues is active and expired

ò  Constant time, since fixed number of queues to check;
only take first item from non-empty queue

O(1) Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Pick first,
highest

priority task
to run

Move to
expired queue
when quantum

expires

What now?

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Blocked Tasks

ò  What if a program blocks on I/O, say for the disk?

ò  It still has part of its quantum left

ò  Not runnable, so don’t waste time putting it on the active
or expired runqueues

ò  We need a “wait queue” associated with each blockable
event

ò  Disk, lock, pipe, network socket, etc.

Blocking Example

Active Expired

139

138

137

100

101

.

.

.

139

138

137

100

101

.

.

.

Disk

Block
on disk! Process

goes on
disk wait

queue

Blocked Tasks, cont.

ò  A blocked task is moved to a wait queue until the
expected event happens

ò  No longer on any active or expired queue!

ò  Disk example:

ò  After I/O completes, interrupt handler moves task back to
active runqueue

Time slice tracking

ò  If a process blocks and then becomes runnable, how do
we know how much time it had left?

ò  Each task tracks ticks left in ‘time_slice’ field

ò  On each clock tick: current->time_slice--!

ò  If time slice goes to zero, move to expired queue

ò  Refill time slice

ò  Schedule someone else

ò  An unblocked task can use balance of time slice

ò  Forking halves time slice with child

More on priorities

ò  100 = highest priority

ò  139 = lowest priority

ò  120 = base priority

ò  “nice” value: user-specified adjustment to base priority

ò  Selfish (not nice) = -20 (I want to go first)

ò  Really nice = +19 (I will go last)

Base time slice

ò  “Higher” priority tasks get longer time slices

ò  And run first

time =
(140− prio)*20ms prio <120

(140− prio)*5ms prio ≥120

#

$
%

&
%

Goal: Responsive UIs

ò  Most GUI programs are I/O bound on the user

ò  Unlikely to use entire time slice

ò  Users get annoyed when they type a key and it takes a
long time to appear

ò  Idea: give UI programs a priority boost

ò  Go to front of line, run briefly, block on I/O again

ò  Which ones are the UI programs?

Idea: Infer from sleep time

ò  By definition, I/O bound applications spend most of
their time waiting on I/O

ò  We can monitor I/O wait time and infer which programs
are GUI (and disk intensive)

ò  Give these applications a priority boost

ò  Note that this behavior can be dynamic

ò  Ex: GUI configures DVD ripping, then it is CPU-bound

ò  Scheduling should match program phases

Dynamic priority

dynamic priority = max (100, min (static priority − bonus + 5,
139))

ò  Bonus is calculated based on sleep time

ò  Dynamic priority determines a tasks’ runqueue

ò  This is a heuristic to balance competing goals of CPU
throughput and latency in dealing with infrequent I/O

ò  May not be optimal

Dynamic Priority in O(1)
Scheduler

ò  Important: The runqueue a process goes in is determined
by the dynamic priority, not the static priority

ò  Dynamic priority is mostly determined by time spent
waiting, to boost UI responsiveness

ò  Nice values influence static priority

ò  No matter how “nice” you are (or aren’t), you can’t boost
your dynamic priority without blocking on a wait queue!

Rebalancing tasks

ò  As described, once a task ends up in one CPU’s
runqueue, it stays on that CPU forever

Rebalancing

CPU 0 CPU 1

.

.

.
.
.
.

CPU 1
Needs More

Work!

Rebalancing tasks

ò  As described, once a task ends up in one CPU’s
runqueue, it stays on that CPU forever

ò  What if all the processes on CPU 0 exit, and all of the
processes on CPU 1 fork more children?

ò  We need to periodically rebalance

ò  Balance overheads against benefits

ò  Figuring out where to move tasks isn’t free

Idea: Idle CPUs rebalance

ò  If a CPU is out of runnable tasks, it should take load
from busy CPUs

ò  Busy CPUs shouldn’t lose time finding idle CPUs to take
their work if possible

ò  There may not be any idle CPUs

ò  Overhead to figure out whether other idle CPUs exist

ò  Just have busy CPUs rebalance much less frequently

Average load

ò  How do we measure how busy a CPU is?

ò  Average number of runnable tasks over time

ò  Available in /proc/loadavg

Rebalancing strategy

ò  Read the loadavg of each CPU

ò  Find the one with the highest loadavg

ò  (Hand waving) Figure out how many tasks we could take

ò  If worth it, lock the CPU’s runqueues and take them

ò  If not, try again later

Outline

ò  Policy goals

ò  O(1) Scheduler

ò  Scheduling interfaces

Setting priorities

ò  setpriority(which, who, niceval) and getpriority()

ò  Which: process, process group, or user id

ò  PID, PGID, or UID

ò  Niceval: -20 to +19 (recall earlier)

ò  nice(niceval)

ò  Historical interface (backwards compatible)

ò  Equivalent to:

ò  setpriority(PRIO_PROCESS, getpid(), niceval)

Scheduler Affinity

ò  sched_setaffinity and sched_getaffinity

ò  Can specify a bitmap of CPUs on which this can be
scheduled

ò  Better not be 0!

ò  Useful for benchmarking: ensure each thread on a
dedicated CPU

yield

ò  Moves a runnable task to the expired runqueue

ò  Unless real-time (more later), then just move to the end of
the active runqueue

ò  Several other real-time related APIs

Summary

ò  Understand competing scheduling goals

ò  Understand O(1) scheduler + rebalancing

ò  Scheduling system calls

