
1	

From	
 Processes	
 to	
 Threads	

	

Don	
 Porter	

Portions	
 courtesy	
 Emmett	
 Witchel	

2	

Processes,	
 Threads	
 and	
 Processors	

! Hardware can execute N instruction streams at once
Ø Uniprocessor, N==1
Ø Dual-core, N==2
Ø Sun’s Niagara T2 (2007) N == 64, but 8 groups of 8

! An OS can run 1 process on each processor at the
same time
Ø Concurrent execution increases performance

! An OS can run 1 thread on each processor at the
same time

3	

Processes	
 and	
 Threads	

! Process abstraction combines two concepts
Ø  Concurrency

  Each process is a sequential execution stream of instructions
Ø  Protection

  Each process defines an address space
  Address space identifies all addresses that can be touched by the

program

! Threads
Ø  Key idea: separate the concepts of concurrency from protection
Ø  A thread is a sequential execution stream of instructions
Ø  A process defines the address space that may be shared by

multiple threads
Ø  Threads can execute on different cores on a multicore CPU

(parallelism for performance) and can communicate with other
threads by updating memory

4	

Example	
 Redux	

Virtual Address Space	

0	

 0xffffffff	

hello libc.so heap

! 2 threads requires 2 stacks in the process
! No problem!
! Kernel can schedule each thread separately

Ø Possibly on 2 CPUs
Ø Requires some extra bookkeeping

stk1 Linux stk2

5	

The	
 Case	
 for	
 Threads	

Consider the following code fragment
for(k = 0; k < n; k++)

 a[k] = b[k] * c[k] + d[k] * e[k];

Is there a missed opportunity here? On a Uni-processor?
On a Multi-processor?

6	

The	
 Case	
 for	
 Threads	

Consider a Web server
 get network message (URL) from client
 get URL data from disk
 compose response
 send response

How well does this web server perform?

7	

Programmer’s	
 View	

void fn1(int arg0, int arg1, …) {…}

main() {

 …
 tid = CreateThread(fn1, arg0, arg1, …);
 …

}

At the point CreateThread is called, execution continues in parent

thread in main function, and execution starts at fn1 in the child
thread, both in parallel (concurrently)

8	

Introducing	
 Threads	

! A thread represents an abstract entity that executes a sequence
of instructions
Ø  It has its own set of CPU registers
Ø  It has its own stack
Ø  There is no thread-specific heap or data segment (unlike process)

! Threads are lightweight
Ø  Creating a thread more efficient than creating a process.
Ø  Communication between threads easier than btw. processes.
Ø  Context switching between threads requires fewer CPU cycles and

memory references than switching processes.
Ø  Threads only track a subset of process state (share list of open

files, pid, …)

! Examples:
Ø  OS-supported: Windows’ threads, Sun’s LWP, POSIX threads
Ø  Language-supported: Modula-3, Java

 These are possibly going the way of the Dodo

9	

Context	
 switch	
 time	
 for	
 which	
 entity	
 is	
 greater?	

1.  Process
2.  Thread

10	

How	
 Can	
 it	
 Help?	

! How can this code take advantage of 2 threads?
for(k = 0; k < n; k++)

 a[k] = b[k] * c[k] + d[k] * e[k];

! Rewrite this code fragment as:

do_mult(l, m) {
 for(k = l; k < m; k++)
 a[k] = b[k] * c[k] + d[k] * e[k];

}
main() {
 CreateThread(do_mult, 0, n/2);
 CreateThread(do_mult, n/2, n);

! What did we gain?

11	

How	
 Can	
 it	
 Help?	

! Consider a Web server
 Create a number of threads, and for each thread do

v  get network message from client
v  get URL data from disk
v  send data over network

! What did we gain?

12	

Overlapping	
 Requests	
 (Concurrency)	

v get network message
(URL) from client

v get URL data from disk

v send data over network

v get network message
(URL) from client

v get URL data from disk

v send data over network

Request 1	

Thread 1	

Request 2	

Thread 2	

Time	

(disk access latency)	

(disk access latency)	

! Total time is less than request 1 + request 2

13	

Why	
 threads?	
 (summary)	

! Computation that can be divided into concurrent
chunks
Ø Same Instruction (or operation), Multiple Data (SIMD – easy)
Ø Harder to identify parallelism in more complex cases

! Overlapping blocking I/O with computation
Ø  If my web server blocks on I/O for one client, why not work

on another client’s request in a separate thread?
Ø Other abstractions we won’t cover (e.g., events)

14	

1.  CPU
2.  Address space
3.  PCB
4.  Stack
5.  Registers

Threads	
 have	
 their	
 own…?	

15	

Threads	
 vs.	
 Processes	

Threads

! A thread has no data segment
or heap

! A thread cannot live on its own,
it must live within a process

! There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack

! If a thread dies, its stack is
reclaimed

! Inter-thread communication via
memory.

! Each thread can run on a
different physical processor

! Inexpensive creation and
context switch

Processes

!   A process has code/data/heap &
other segments

!   There must be at least one
thread in a process

!   Threads within a process share
code/data/heap, share I/O, but
each has its own stack &
registers

!   If a process dies, its resources
are reclaimed & all threads die

!   Inter-process communication via
OS and data copying.

!   Each process can run on a
different physical processor

!   Expensive creation and context
switch

16	

Implementing	
 Threads	

! Processes define an address
space; threads share the
address space

! Process Control Block (PCB)
contains process-specific
information
Ø  Owner, PID, heap pointer,

priority, active thread, and
pointers to thread information

! Thread Control Block (TCB)
contains thread-specific
information
Ø  Stack pointer, PC, thread state

(running, …), register values, a
pointer to PCB, … Code

Initialized data

Heap

DLL’s

mapped segments

Process’s
address space

Stack – thread1

PC
SP

State
Registers

…

TCB for
Thread1

Stack – thread2

PC
SP

State
Registers

…

TCB for
Thread2

17	

Threads’	
 Life	
 Cycle	

! Threads (just like processes) go through a sequence of start,
ready, running, waiting, and done states

Running Ready

Waiting

Start Done

18	

Threads	
 have	
 the	
 same	
 scheduling	
 states	
 as	

processes	

1.  True
2.  False

! In fact, OSes generally schedule threads to CPUs, not processes

19	

! User-level threads (M to 1 model)
Ø  + Fast to create and switch
Ø  + Natural fit for language-level threads
Ø  - Duplicate effort (2 thread schedulers)

 The schedulers can fight with each other
Ø  - All user-level threads in process block on OS calls

  E.g., read from file can block all threads

! Kernel-level threads (1 to 1 model)
Ø  + Kernel-level threads do not block process for syscall
Ø  + Only one scheduler (and kernel has global view)
Ø  - Can be difficult to make efficient (create & switch)

User-­‐level	
 vs.	
 Kernel-­‐level	
 threads	

user

kernel

Process0 Process1

20	

! Kernel-level threads have won for systems
Ø  Linux, Solaris 10, Windows
Ø  pthreads tend to be kernel-level threads

! User-level threads still used in some Java runtimes
Ø User tells JVM how many underlying system threads

  Default: 1 system thread
Ø  Java runtime intercepts blocking calls, makes them non-

blocking
Ø  JNI code that makes blocking syscalls can block JVM
Ø  JVMs are phasing this out because kernel threads are

efficient enough and intercepting system calls is complicated

! Kernel-level thread vs. process
Ø Each process requires its own page table & hardware state

(significant on the x86)

Languages	
 vs.	
 Systems	

21	

Editorial	
 on	
 User	
 vs.	
 Kernel	
 threads	

! There is a 25+ year history of debating user vs.
kernel threads
Ø  These discussions are couched in grand principles

! The real issue is simple: Performance!!
Ø  If the kernel implementation of thread context switching is

slow, everyone starts writing user-level thread packages

 Java did this for a while
Ø  If the kernel implementation gets faster, everyone just uses

kernel threads, since they are easier

 Java does this now, Linux 2.6 overhauled its
thread implementation

22	

Latency	
 and	
 Throughput	

! Latency: time to complete an operation
! Throughput: work completed per unit time
! Multiplying vector example: reduced latency
! Web server example: increased throughput
! Consider plumbing

Ø  Low latency: turn on faucet and water comes out
Ø High bandwidth: lots of water (e.g., to fill a pool)

! What is “High speed Internet?”
Ø  Low latency: needed to interactive gaming
Ø High bandwidth: needed for downloading large files
Ø Marketing departments like to conflate latency and

bandwidth…

23	

Relationship	
 between	
 Latency	
 and	
 Throughput	

! Latency and bandwidth only loosely coupled
Ø Henry Ford: assembly lines increase bandwidth without

reducing latency

! My factory takes 1 day to make a Model-T ford.
Ø But I can start building a new car every 10 minutes
Ø At 24 hrs/day, I can make 24 * 6 = 144 cars per day
Ø A special order for 1 green car, still takes 1 day
Ø  Throughput is increased, but latency is not.

! Latency reduction is difficult
! Often, one can buy bandwidth

Ø E.g., more memory chips, more disks, more computers
Ø Big server farms (e.g., google) are high bandwidth

24	

Latency,	
 Throughput,	
 and	
 Threads	

! Can threads improve throughput?
Ø Yes, as long as there are parallel tasks and CPUs available

! Can threads improve latency?
Ø Yes, especially when one task might block on another task’s

IO

! Can threads harm throughput?
Ø Yes, each thread gets a time slice.
Ø  If # threads >> # CPUs, the %of CPU time each thread gets

approaches 0

! Can threads harm latency?
Ø Yes, especially when requests are short and there is little I/O

25	

Best	
 Practices?	

! For CPU-intensive work, applications generally create
one thread per CPU

! For work with I/O, the number of threads is tuned to
keep the CPU busy but not overloaded
Ø E.g., 3 * # CPUs
Ø  Tuning effort often application-specific

! Applications like web servers often keep thread
pools, or a set of n ready threads
Ø New requests are assigned to an existing thread to avoid

overloading the system
Ø Plus, reduce setup/tear down costs!

26	

Thread	
 or	
 Process	
 Pool	

! Creating a thread or process
for each unit of work (e.g.,
user request) is dangerous
Ø  High overhead to create &

delete thread/process
Ø  Can exhaust CPU &

memory resource
! Thread/process pool controls

resource use
Ø  Allows service to be well

conditioned.

Load
Th

ro
ug

hp
ut

Well conditioned
Not well conditioned

27	

When	
 a	
 user	
 level	
 thread	
 does	
 I/O	
 it	
 blocks	
 the	

entire	
 process.	

1.  True
2.  False

28	

Lecture	
 Summary	

! Understand the distinction between a process and
thread

! Understand the motivation for threads
! Kernel vs. User threads
! Concepts of Throughput vs. Latency
! Thread pools

