‘\\\‘ Stony Brook University CSE 306: Operating Systems

Operating Systems History
and Overview

Portions of this material courtesy Profs. Wong and Stark

NN T, —
QI stony Brook University CSE 306: Operating Systems

So what is an OS?

QI stony Brook University CSE 306: Operating Systems

One view of an OS

)

eeeeeeeee

’:F | ﬁ wt - e [Gl[m] o e o s o rFo—

sssssss

- 2 .
Teaer i
o
iy’
gy

@

mwm&% P Ry SRS R TR m&i = &

QI stony Brook University CSE 306: Operating Systems

Another simple view of an OS

NN T, —
QI stony Brook University CSE 306: Operating Systems

A less happy view of an OS

e ol Jasstiaton =

Device dover software was not successtully installed

Hlease consult with your device manefacturer 1or sistance getting this device instaled
USE Mass Sterage Device J Ready to use

WD BAD PCS USE Device J Ready 16 use

WD Ses USE Device XK Ne derver found

NN T, —
QI stony Brook University CSE 306: Operating Systems

So which one is right?
* They all are

NN T —_——. O —
1\\\‘ Stony Brook University CSE 306: Operating Systems

An OS serves three masters

1. Give users a desktop environment

2. Give applications a more usable abstraction of the
hardware

3. Give hardware manufacturers an abstraction of the
applications

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Background (1)

 CPUs have 2 modes: user and supervisor
— Sometimes more, but whatevs

e Supervisor mode:
— Issue commands to hardware devices
— Power off, Reboot, Suspend
— Launch missiles, Do awesome stuff

e User mode:

— Run other code, hardware tattles if you try anything
reserved for the supervisor

QI stony Brook University CSE 306: Operating Systems

OS architecture

QI stony Brook University CSE 306: Operating Systems

OS architecture

User

Super-
visor

Hardware

Q\\\‘ Stony Brook University CSE 306: Operating Systems

Master #2: Applications

e Application Programming Interface (API)
— Win32 (Windows)
— POSIX (Unix/Linux)
— Cocoa/Cocoa Touch (Mac 0OS/iOS)
e Application-facing functions provided by libraries
— Injected by the OS into each application

QI stony Brook University CSE 306: Operating Systems

OS architecture

User

Super-
visor

Hardware

QI stony Brook University CSE 306: Operating Systems

OS architecture

User

Super-
visor

Hardware

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Famous libraries, anyone?

 Windows: ntdll.dll, kernel32.dll, user32.dll, gdi32.dll
 Linux/Unix: libc.so, Id.so, libpthread.so, libm.so

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Caveat 1

e Libraries include a lot of code for common functions
— Why bother reimplementing sqgrt?

* They also give high-level abstractions of hardware
— Files, printer, dancing Homer Simpson USB doll

e How does this work?

Q\\\‘ Stony Brook University CSE 306: Operating Systems

System Call

e Special instruction to switch from user to supervisor
mode

* Transfers CPU control to the kernel

— One of a small-ish number of well-defined functions

* How many system calls does Windows or Linux
have?

— Windows ~1200
— Linux ~350

QI stony Brook University CSE 306: Operating Systems

OS architecture

Open file Ok, here’s

“hw1l.txt” handle 4

System Call Table (350—1200)

Hardware

o NN T, —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Caveat 2

 Some libraries also call special apps provided by the
OS, called a daemon (or service)

— Communicate through kernel-provided API

 Example: Print spooler
— App sends pdf to spooler
— Spooler checks quotas, etc.
— Turns pdf into printer-specific format
— Sends reformatted document to device via OS kernel

QI stony Brook University CSE 306: Operating Systems

OS architecture

Daemon

User

Super-

System Call Table (350—1200) visor

Hardware

Q\\\‘ Stony Brook University CSE 306: Operating Systems

Master 3: Hardware

* OS kernels are programmed at a higher low level of
abstraction

— Disk blocks vs. specific types of disks

* For most types of hardware, the kernel has a “lowest
common denominator” interface
— E.g., Disks, video cards, network cards, keyboard

— Think Java abstract class
— Sometimes called a hardware abstraction layer (HAL)

* Each specific device (Nvidia GeForce 600) needs to
implement the abstract class

— Each implementation is called a device driver

QI stony Brook University CSE 306: Operating Systems

OS architecture

Daemon
| Libraties | yser
Super-
System Call Table (350—1200) visor

Hardware

Q\\\‘ Stony Brook University CSE 306: Operating Systems

What about Master 1

 What is the desktop?

* Really just a special daemon that interacts closely
with keyboard, mouse, and display drivers

— Launches programs when you double click, etc.

— Some program libraries call desktop daemon to render
content, etc.

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

An OS serves three masters

1. Give users a desktop environment
— Desktop, or window manager, or GUI

2. Give applications a more usable abstraction of the
hardware
— Libraries (+ system calls and daemons)
3. Give hardware manufacturers an abstraction of the
applications
— Device Driver API (or HAL)

Q\\\‘ Stony Brook University CSE 306: Operating Systems

Multiplexing Resources

 Many applications may need to share the hardware

* Different strategies based on the device:
— Time sharing: CPUs, disk arm
* Each app gets the resource for a while and passes it on
— Space sharing: RAM, disk space
e Each app gets part of the resource all the time

— Exclusive use: mouse, keyboard, video card

* One app has exclusive use for an indefinite period

NN T —_——. O —
1\\\‘ Stony Brook University CSE 306: Operating Systems

So what is Linux?

e Really just an OS kernel
— Including lots of device drivers

* Conflated with environment consisting of:
— Linux kernel
— Gnu libc
— X window manager daemon
— CUPS printer manager
— Etc.

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

So what is Ubuntu? Centos?

e Adistribution: bundles all of that stuff together
— Pick versions that are tested to work together

— Usually also includes a software update system

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

OSX vs iOS?

e Same basic kernel (a few different compile options)

e Different window manager and libraries

Q\\\‘ Stony Brook University CSE 306: Operating Systems

What is Unix?
 Averyold OS (1970s), innovative, still in use

* |nnovations:

— Kernel written in C (first one not in assembly)
* Co-designed C language with Unix

— Several nice API abstractions
* Fork, pipes, everything a file

e Several implementations: *BSDs, Solaris, etc.
— Linux is a Unix-like kernel

‘\\\‘ Stony Brook University CSE 306: Operating Systems

What is POSIX?

e A standard for Unix compatibility

 Even Windows is POSIX compliant!

NN T, —
QI stony Brook University CSE 306: Operating Systems

History of Operating Systems

e Two ways to look at history:
— Evolution of the Theory
— Evolution of the Machine/Hardware

¢

O
o

;ubuntu

/

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Evolution of OS Theory

1. Centralized operating system
— Resource management and multiprogramming, Virtuality

2. Network operating system
— Resource sharing to achieve Interoperability

3. Distributed operating system

— Singe computer view of a multiple computer system for
Transparency

4. Cooperative autonomous system
— Cooperative work with Autonomicity

Decreasing Degree of Hardware and Software Coupling

Ist 3rd 4th 2nd
—
centralized distributed cooperative network
operating operating autonomous operating
system system system system

‘\\\‘ Stony Brook University

CSE 306: Operating Systems

Evolution of OS Machine/Hardware

MS

FMS | | IBSYS Apple Windows XP
Late Early BSD Macintosh Limx 2001
50's 60's 70 1084 U
= S 1977 T 1991 | |
A N NS NS
1950 | 1970 | 1980 [1990 [2000
UNIX | | UNIX 95 | |
— Ms- | [Ms- - MacOS
1971 DOS Windows 1995 X
1981 | | 1085 2001

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

1940’s — First Computers

* One user/programmer at a time (serial
— Program loaded manually using switches

— Debug using the console lights

* ENIAC
— 15t gen purpose machine
— Calculations for Army
— Each panel had specific
function

ENIAC (Electronic Number Integrator and Computer)

‘\\\‘ Stony Brook University CSE 306: Oper at

1940’s — First Computers

 Vacuum Tubes and Plugboards

* Single group of people designed, built,
programmed, operated and maintained
each machine

* No Programming language, only absolute
machine language (101010)

e (O/S? Whatis an O/S?
e All programs basically did numerical

Armong the first assignrents given to Eniac, first all-electronics digital co
; g h

calculations e e e
Pros: _ _ _ Cons: ,
* |nteractive —immediate Lots of Idle time
response on lights — Expensive computation
* Programmers were women * Error-prone/tedious
© Each program needs all driver
code

o NN T, —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

1950’s — Batch Processing

e Deck of cards to describe job

* Jobs submitted by multiple users are sequenc
automatically by a resident monitor

* Resident monitor was a basic O/S
— S/W controls sequence of events

— Command processor
— Protection from bugs (eventually)

— Device drivers |

$JOB, 10,6610802, MARVIN TANENBAUM

1\\\‘ Stony Brook University CSE 306: Operating Systems

Monitor’s Perspective

lnterru.pt
* Monitor controls the sequence of i
eve nts Monitor < e
Job
* Resident Monitor is software always Cq”ggg
in memory Boundary . | |___erpreter
* Monitor reads in job and gives
control User
program

area

e Job returns control to monitor

Figure 2.3 Memory Layout for a
Resident Monitor

‘\\\‘ Stony Brook University

401

I

2)

Tape
drive

ard
deg'
|

(LRI
1401

{b)

Pros:

* CPU kept busy, less idle time
* Monitor could provide I/O

services

Input

tape
x’
é\yb,

i

(c)

System
tape

o

e}

Output

tape

AITTHTAT
7094

(d)

o
ﬂ

1950’s — Batch Processing

Printer

(LTI
1401

U]

Cons:

No longer interactive —
turnaround time

Debugging more difficult
CPU still idle for 1/0-bound
jobs

Buggy jobs could require
operator intervention

CSE 306: Operating Systems

IBM 7090

longer

Q\\\‘ Stony Brook University CSE 306: Operating Systems

Multiprogrammed Batch Systems
* CPU is oftenidle

— Even with automatic job sequencing.
— 1/0 devices are slow compared to processor

Read one record from file 15 ps
Execute 100 instructions 1 s
Write one record to file 15 us
TOTAL 31 us

Percent CPU Utilization = % =0032=32%

- Figure 2.4 System Utilization Example -

NN T —_——. O —
‘\\\‘ Stony Brook University CSE 306: Operating Systems

Uniprogramming

* Processor must wait for I/O instruction to complete
before preceding

Program A Run Wait Run Wait

Time »

(a) Uniprogramming

‘\\\‘ Stony Brook University CSE 306: Operating Systems

Multiprogramming

 When one job needs to wait for I/O, the processor
can switch to the other job

Program A Run Wait Run Wait
Program B Wait| Run Wait Run Wait
: Run | Run - Run | Run -
Combined A B Wait Al B Wait
Time 3

(b) Multiprogramming with two programs

QI stony Brook University CSE 306: Operating Systems

Program A

Program B

Program C

Combined

Multiprogramming

Run Wait Run Wait
Wait| Run Wait Run Wait
Wait | Run Wait Run Wait
Rzn Rll;n R(l:m Wait R:n Rll;n R(I:m Wait
Time »

(c) Multiprogramming with three programs

Q\\\‘ Stony Brook University CSE 306: Operating Systems

1960’s — Multiprogramming

(time-sharing)
 CPU and I/O devices are multiplexed (shared)
between a number of jobs

— While one job is waiting for I/O another can use the CPU
— SPOOLing: Simultaneous Peripheral Operation OnLine

e 1stand simplest multiprogramming system

* Monitor (resembles O/S)
— Starts job, spools operations, /0, Job 3 >

Memory
partitions

Job 2
switch jobs, protection between memory

Job 1

Operating
system

Q\\\‘ Stony Brook University CSE 306: Operating Systems
1960’s — Multiprogramming

o time-sharing

IBM System 360

Pros: Cons:
* Paging and swapping (RAM) H/W more complex
* Interactiveness * 0/S complexity?

e Qutput available at completion
* CPU kept busy, less idle time

Q\\\‘ Stony Brook University CSE 306: Operating Systems

1970’s - Minicomputers and
Microprocessors

* Trend toward many small personal computers or
workstations, rather than a single mainframe.

— Advancement of Integrated circuits

* Timesharing

— Each user has a terminal and shares a single machine
(Unix)

Q\\\‘ Stony Brook University CSE 306: Operating Systems
1980’s — Personal Computers &
Networking

* Microcomputers = PC (size and S)
« MS-DOS, GUI, Apple, Windows

* Networking: Decentralization of computing required
communication

— Not cost-effective for every user to have printer, full copy
of software, etc.

— Rise of cheap, local area networks (Ethernet), and access
to wide area networks (Arpanet).

QI stony Brook University CSE 306: Operating Systems
1980’s — Personal Computers &
Networking
* OSissues:

— Communication protocols, client/server paradigm

— Data security, encryption, protection

— Reliability, consistency, availability of distributed data
— Heterogeneity

— Reducing Complexity

* Ex: Byte Ordering

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

1990’s — Global Computing

 Dawn of the Internet
— Global computing system

 Powerful CPUs cheap! Multicore systems
* High speed links
e Standard protocols (HTTP, FTP, HTML, XML, etc)

e OS Issues:

— Communication costs dominate
* CPU/RAM/disk speed mismatch
* Send data to program vs. sending program to data

— QoS gurantees
— Security

QI stony Brook University CSE 306: Operating Systems

In the year 2000...

SRR annan
KA aa

Q\\\‘ Stony Brook University CSE 306: Operating Systems
2000’s — Embedded and Ubiquitous
Computing

 Mobile and wearable computers

e Networked household devices

* Absorption of telephony, entertainment functions
Into computing systems P

* OSissues:
— Security, privacy ‘
— Mobility, ad-hoc networks, power managt

— Reliability, service guarantees

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

2000’s — Embedded and Ubiquitous Computing

e Real-time computing
— Guaranteed upper bound on task completion

* Dedicated computers/Embedded systems V
— Application specific, designed to complete particular tasks

e Distributed systems
— Redundant resources, transparent to user

Q\\\‘ Stony Brook University CSE 306: Operating Systems

Multi-core
* New hotness in CPU design. Not going away.
— Why?

* Being able to program with threads and concurrent
algorithms will be a crucial job skill going forward

— Don’t leave SBU without mastering these skills
— We will do some thread programming in Lab 3

o NN T, —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Editorial

 Some textbooks imply modern OSes are
microkernels

* This is false
— Windows NT and OSX were designed as microkernels
— Then reverted to essentially monolithic designs in practice

* Linux was never a microkernel
— Google the famous Torvalds Tanenbaum debate

e Similarly, Distributed OSes are mostly abandoned

NN T —_——. O —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Object orientation

* Objects are a key feature of the Windows NT kernel
design
— IMO a good idea

* Linux actually has its own bizarre version of object
orientation using C structs and function pointers
— In Unix, everything is a file
— How did they pull this off?
— Poor-man’s object inheritance

o NN T, —
Q\\\‘ Stony Brook University CSE 306: Operating Systems

Summary

* OS’s began with big expensive computers used
interactively by one user at a time.

e Batch systems sequences jobs to keep computer
busier. Interactivity sacrificed.

* Multiprogramming developed to make more efficient
use of expensive hardware and restore
Interactiveness.

* Cheap CPU/memory/storage make communication
the dominant cost.

 Multiprogramming still central for handling
concurrent interaction with environment.

NN T —_——. O —
‘\\\‘ Stony Brook University CSE 306: Operating Systems

Summary (2)

e Understand what an OS is
— Three masters
— Nomenclature

e Questions?

