
CSE	306:	Opera.ng	Systems	

Fast	File	System	
	

Don	Porter	

1	



CSE	306:	Opera.ng	Systems	

How	to	place	a	file	system	on	disk?	
•  Let’s	assume	we	have	the	following:	
–  Super	block	(allocaCon	bitmap,	FS-level	metadata)	
–  Inodes	(file-level	metadata)	
–  Data	blocks	

•  Thoughts?	

2	



CSE	306:	Opera.ng	Systems	

Strawman	

•  Problems?	

3	

Super-	
block	 Inodes	 Data	

0	 DISKSZ	



CSE	306:	Opera.ng	Systems	

Typical	file	access	paOern	

•  cat	a	
•  cat	b	
•  cat	c	

4	

Super-	
block	 Inodes	 Data	

0	 DISKSZ	

Head	

Lots	of	seeking	–	no	locality	for	head	across	files	



CSE	306:	Opera.ng	Systems	

Metadata	locality	
•  File	data	and	metadata	(inode)	are	frequently	
accessed	together	

•  Simple	design	fails	to	capture	this	paOern	
•  Any	ideas?	

5	



CSE	306:	Opera.ng	Systems	

Block	(or	Cylinder)	Group	

•  Stripe	smaller	chunks	of	these	triples	across	disk	
•  Superblock:	
–  Some	data	replicated	(good	for	crash	tolerance)	
–  Some	data	distributed	(free	block	bitmap)	

•  Per-group	inodes	and	blocks	

6	

S	 Ino
des	 Data	

0	 DISKSZ	

S	 Ino
des	 Data	 S	 Ino

des	 Data	



CSE	306:	Opera.ng	Systems	

Block	(or	Cylinder)	Group	

•  What	does	this	give	you?	
–  Average	case:	Inode	+	data	relaCvely	close	

•  Reduce	average-case	seek	Cme	

•  Performance	goal:		
–  Put	things	together	that	are	accessed	together	
–  How?	

7	

S	 Ino
des	 Data	

0	 DISKSZ	

S	 Ino
des	 Data	 S	 Ino

des	 Data	



CSE	306:	Opera.ng	Systems	

FFS	data	placement	heurisCcs	
•  Keep	related	things	together	
•  Keep	unrelated	things	far	apart	

•  Directories:	
–  New	directories	placed	in	least-uClized	cylinder	group	

•  Low	number	of	total	directories	+	plenty	of	free	inodes	
•  Why?	

•  Files:	
–  Blocks	of	files	should	be	allocated	in	same	group	as	inode	
–  Place	files	in	same	directory	in	same	group	

8	Edge	cases?	



CSE	306:	Opera.ng	Systems	

Edge	case	1:	Large	files	
•  Where	to	place	a	big	file	(e.g.,	movie	download)?	
–  OpCon	1:	Fill	up	1+	enCre	block	groups	(best	fit)	

•  Pro:	Data	is	close	together	
•  Con:	Wastes	inodes	in	block	group	(or	causes	them	to	be	far	apart	
•  Requires	a	lot	of	free	space	in	1+	groups	to	work	

–  Degenerate	case:	only	a	few	blocks	free	in	each	group	

–  OpCon	2:	Spread	data	across	many	block	groups	(worst	fit)	
•  Pro:	Tries	to	keep	larger	regions	of	free	space	
•  Cons:	Can	end	up	seeking	across	many	block	groups	

9	



CSE	306:	Opera.ng	Systems	

AmorCzing	seeks	
•  Seeks	have	a	fixed	cost	
–  Let’s	say	10	ms	on	a	current	HDD	

•  Transfer	Cme	is	proporConal	to	amount	of	
conCguous	data	moved	
–  Let’s	say	125	MB/s	on	a	current	HDD	

•  Insight:	We	can	control	fracCon	of	Cme	spent	
seeking	by	data	allocaCon	size	

10	



CSE	306:	Opera.ng	Systems	

AmorCzing	seeks	
•  Suppose	we	want	to	spend	half	of	our	Cme	seeking:	
–  I.e.,	we	want	to	spend	10	ms	in	transfer	Cme	

•  Suppose	we	want	to	spend	10%	of	our	Cme	seeking	

11	

125MB
1s

* 1s
1000ms

*10ms =1.25MB

125MB
1s

* 1s
1000ms

*90ms =11.25MB

Caveat:	You	need	to	actually	use	this	much	data	



CSE	306:	Opera.ng	Systems	

FragmentaCon	
•  Not	fragmenCng	free	space	becomes	very	important	
to	performance	

•  Internal:	Lots	of	files	smaller	than	1.25	MB	
–  Idea:	pack	mulCple	small	files	into	one	1.25	MB	chunk	

•  Called	sub-blocking	

•  External:	Need	to	keep	enough	free	space	in	a	block	
group	for	a	directory	
–  Approach:	load	balance	across	block	groups	
–  No	good	soluCon	when	disk	is	nearly	full	

12	



CSE	306:	Opera.ng	Systems	

Edge	case	2:	Renaming	
•  How	does	rename	work?	
–  Change	the	pointer	from	name	to	inode	

•  ImplicaCon	for	locality	if	you	move	files	across	
directories?	
–  Create	in	one	block	group	
–  Rename	to	directory	in	a	different	block	group	
–  Directory	contents	no	longer	in	same	group	

13	



CSE	306:	Opera.ng	Systems	

Edge	case	2:	Renaming	
•  What	to	do?	
–  Live	with	it	(one	of	several	was	a	file	system	ages)	
– Move	the	data	(slow):		

•  BetrFS	v.1	does	this;	takes	5	minutes	to	rename	a	4	GB	file	

14	



CSE	306:	Opera.ng	Systems	

FFS	Summary	
•  First	file	system	designed	for	good	performance	
•  Design	principles	sCll	in	use	today	
–  Ext*	family	on	Linux	
–  FFS	sCll	used	in	BSD	

•  Key	ideas:	
–  Block/cylinder	groups	
–  Data	placement	heurisCcs	
–  AmorCzing	seeks	

15	


