

Stony Brook University

Traditional UNIX access control

- · Objects have owners
- Owners have broad control over their objects
- · You own new objects that you create
- The special user account "root" can act as the owner of any object
- Only root can perform certain sensitive administration operations

8-7

CSE/ISE 311: Systems Administration

Filesystem access control

- Every file has an owner and a owner group
- The owner can set the permissions of a file
- A owner group allows a file to be shared among members of the same project
 - Groups are traditionally defined in /etc/group, now in an NIS or LDAP server on the network
 - The file owner specifies what the members of the group can do with the file

8-8

Stony Brook University

CSE/ISE 311: Systems Administration

Determining file ownerships

\$1s -1 filename

-rw----- 1 yliu csstaff 4529 Jul 15 2010 todo

- the file todo is owned by the user yliu and the group csstaff
- Letters and dashes in the first column symbolize file permissions
 - There are 9 permission bits
 - Control who can read, write, and execute the file content
 - Also 3 other bits for executable programs (ignored for now)

-9

Stony Brook University

CSE/ISE 311: Systems Administration

rwxrw-

The permission bits

- The 12 bits are called "mode bits". Can be changed using "chmod" command
- 3 sets of permissions
 - Owner of the file
 - Group owners of the file
 - Evervone else
- Each set has three bits:
 - A read bit, a write bit, and an execute bit

A good reference on permissions: http://www.perlfect.com/articles/chmod.shtml

8-10

Stony Brook University

CSE/ISE 311: Systems Administration

The permission bits (cont'd)

- Each user fits into only one permission set
 - Owner, group owner, or other, the most specific one
- Permissions for a file
 - Read: allow file open and read
 - Write: allow file content modification/truncation
 - Execute: allow file to be executed
- · Permission for a directory
 - Read: allow content listing
 - Write: allow file creation, deletion, renaming
 - Execute: allow to enter the directory but not listing

R.11

Stony Brook University

CSE/ISE 311: Systems Administration

Another example

\$1s -1 /bin/gzip

-rwxr-xr-x 3 root root 57136 Jun 15 2004 / bin/gzip

- the first character is a dash, means a regular file
- Owner has all permissions, everyone else has only read and execute permissions
- Other content: link count for the file; owner, and group owner; file size in bytes, date of last modification, file name

8-

Stony Brook University

The life cycle of a process

- When the system boots, the kernel creates and installs several processes
- The most notable: init, which has PID 1. It executes system's startup scripts
- All processes other than the ones the kernel creates are descendants of init
- At completion, _exit notifies the parent process or init (if parent terminated) the exit code of a child process

3-19

CSE/ISE 311: Systems Administration

Process ownership

- A process' UID is the UID of the person who created it
- The owner of a process can send the process signals
- Can also reduce the process' scheduling priority
- Process "effective" UID determines its access permission
