

Network Firewalls

Don Porter

Firewalls: An Essential Tool

- Previous Lectures: Every service on a system visible to the outside world is a potential attack vector
- Observations:
 - It is really hard to police every single system for insecure software (although you should do this)
 - Some network services are intended only for use inside your network
- Idea: Filter incoming network connections

How to let users access database, but not bad guy?

Direct outside connections to database blocked

Example Recap

- A firewall (aka packet filter) looks at packet headers and filters them based on attributes such as IP address and port number
- Can filter incoming and outgoing traffic
- Can log dodgy packets for further inspection

Types of Firewalls

- Most personal computers include firewall software
 - Linux: iptables
 - Windows: part of Microsoft Security Essentials
- For enterprise deployments, you can buy standalone firewall boxes from companies like Cisco
- For smaller deployments, a Linux system can also act as a firewall, using same software
 - In fact, many personal router/firewall/access point boxes
 run a lightweight Linux build + iptables

More Layered Security

- Some servers are intended to be publicly accessible (e.g., the web server)
- Others are for internal-use only and contain sensitive information (e.g., the database server)
- What happens if the web server is compromised?
 - Web server is inside the firewall
 - Can access the sensitive database server
 - Attacker can use web server to attack database

Refinement: DMZ

- Idea: Put a second firewall between public and private services
- We call the public part of the network the *Demilitarized Zone (DMZ)*

DMZ Recap

- Best practice: 2 firewalls
 - One between you and internet
 - One between public and private servers
- Limits damage if your web server is compromised

Incoming Traffic Caveats

- As presented, the rules are pretty simple:
 - E.g., block everything except traffic to web server
- But what about responses to external traffic?
 - E.g., http GET of <u>www.google.com</u>?
- Firewalls generally track some connection-level state, allow incoming responses to requests from inside the firewall
 - Sometimes called stateful inspection
 - States of note: Established and Related

Firewall Overview Summary

- Placing packet filters near your router can protect your network
 - Block access to private systems
 - Mitigate risk of user running a vulnerable service without your knowledge
- Multiple firewalls can be useful
 - DMZ
 - Host-level firewall
- Only one piece of the puzzle!
 - Disabling vulnerable services, security patches, etc., still matter

iptables

 Let's walk through how you might configure iptables on a Linux machine

Key abstractions

- Rules: If packet matches X, take action Y
- Examples:
 - -p tcp --dport 80 -j ACCEPT
 - (If the packet is a TCP packet destined for port 80, allow)
 - -s 87.84.250.101 -j DROP
 - (If the packet comes from IP address 87.84.250.101, silently drop)
 - -p icmp --limit 2/sec -j ACCEPT
 - (Limit incoming pings to 2 per second)

Key Abstractions

- *Chains*: An ordered list of rules
 - Evaluation stops on a match
- Generally has the structure:

```
If A, Accept
```

If B, Accept

... (more accept rules)

Drop everything else

Key Abstractions

- Tables: Collection of chains
 - Each chain applied to different stages of packet processing
- Default table: "filter", has 3 chains:
 - INPUT chain of rules for packets coming into local machine
 - OUTPUT chain of rules for packets leaving the local machine (and that originated on the machine)
 - FORWARD chain of rules for routed packets
 - I.e., packets that enter one device and leave on another

Detailed Example (command line)

```
iptables -F
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT
iptables -A INPUT --state
  RELATED, ESTABLISHED - j ACCEPT
iptables -A INPUT -p icmp --limit
  2/sec -j ACCEPT
iptables -A INPUT -i lo -j ACCEPT
Iptables -p tcp --dport 22 -j ACCEPT
```


How to automatically reload?

- You can just type sudo iptables -L to see current state
- You can dump the current iptables state using:
- sudo iptables-save > saved-rules
- You can restore the same rules again using:
- sudo iptables-restore < saved-rules</pre>

As part of boot...

- You can generally configure rules when a machine is brought up in /etc/network/interfaces
 - This is the standard network configuration file
 - Directive: pre-up
- Example:

```
auto eth0
iface eth0 inet dhcp
  pre-up iptables-restore < /etc/iptables.up.rules</pre>
```

Summary

- Firewalls can harden your network
 - But are not a panacea
- In fact, use 2 firewalls, and have a DMZ for public systems
- Iptables is good to have in your toolbox