

Logging

Portions courtesy Ellen Liu

Outline

- Introduction
- Finding log files
- Syslog: the system event logger
- Linux "logrotate" tool
- Condensing log files to useful information
- Logging policies

Who and Why

- System daemons, kernel, and utilities produce log data onto disks
- Most log data has limited useful life, needs to be summarized, compressed, archived, then removed
- Access and audit data are needed by government regulations and company policies
- Logs also reveal configuration problems

Logs

- A log event is captured as a single line of text
 - time and date, type and severity of the event, etc.,
 often separated by spaces, tabs, or punctuation
- Logs are plaintext files, can be processed by shell commands and shell scripts
- There are also log management tools that rotate, compress, and monitor log files daily or weekly

syslog messages

IT Standards & Industry Regulations

COBIT

 A set of best practices framework for information technology (IT) management

• ISO 27002

- Provides best practice recommendations on information security management
- Require sites to maintain a centralized, hardened, enterprise-wide repository for logs, with NTP time stamps and a strict retention schedule

Finding Log Files

- Names: maillog, ftp.log, lpd-errs, console log, ...
- For Linux, by default most are found in /var/log, /var/adm
- Some common log files:

File	Program	Where	Freq	Contents
acpid	acpid	F	64K	Power-related events
boot.log	rc scripts	F	M	Output of startup scripts
cron	cron	S	W	cron executions and errors
faillog	login	Н	W	Unsuccessful login attempts
httpd/*	httpd	F	D	Apache logs
yum.log	yum	F	M	Package management log

Where (filename source) - S: syslog, H: hardwired, F: configuration file Freq (freq. of cleanup) - D: Daily, W: Weekly, M: Monthly, Size-based

Log Permissions and Syslog

- Log files are normally owned by root
 - Occasionally by less privileged httpd, mysqld, etc.
- Sensitive logs need tight permissions. Others can be set to world-readable

- Syslog: an integrated system to concentrate logs
 - On UNIX/Linux systems
 - syslogd daemon
 - configuration file: /etc/syslog.conf

Log Files Management

- Log files can grow large quickly, especially with busy services, e.g., email, web, and DNS servers
- They may fill up the disk, degrading system performance
- Normally one uses a separate partition for busiest log files
 - On Linux, it is a good choice to have /var or /var/log occupy a separate partition on the disk

Logs not to manage

Logs are text files to which lines are written as interesting events occur. But some logs are different

- wtmp: records of users' logins / logouts, system reboot and shutting down. Binary format. Use "last" command to decode
- lastlog: similar to above. Only records last login for each user.
- utmp: keeps a record of each user that is currently logged in.
 Maybe inaccurate if a shell is killed inappropriately

You may read the man pages of each for more information

Vendor specific log file locations

 Vendors may have their log files all over the disk. Check daemons' config files and syslog configuration files to find them

Linux "logrotate" tool

- Linux logs are usually clearly named and consistently stored in / var/log
- Linux distributions also include a log management tool "logrotate". It rotates, truncates, manages logs
- New software can add a config file to /etc/logrotate.d directory, to set up a management strategy for their logs, as part of their installation produceudre.

Syslog: the system event logger

- Liberate programmers from tedious mechanics of writing log files
- Put administrators in control of logging rather than letting every program make up its own logging policy, such as what information to keep and where it is stored
- Let you sort messages by importance and source, also route messages to a variety of destinations: log files, users' terminals, other machines' syslogd
 - The last one can centralize logging on a network

Syslog Architecture

Three parts:

- syslogd: the logging daemon, its config file /etc/syslog.conf
- openlog et al., library routines that submit msgs to syslogd
- logger: a user command that submits log entries from the shell
- Syslogd is started at boot time and runs continuously
- Programs write log entries using the library calls
- One can submit an entry using command "logger"
 - logger -p local7.warning "a warning message"

Configuring Syslogd

- /etc/syslog.conf file, called /etc/rsyslog.conf in CentOS 6
 - It is a text file with simple format
 - '#' starts comment lines, which are ignored
 - The basic format: Selector<tab>action
 - Can have one or more tabs
 - E.g., "mail.info<tab>/var/log/maillog"
 causes messages from the email system to be saved in /var/log/maillog file

Syslog Selectors

- Selectors identify the program sending the log message, and the message's severity level,
- Selectors syntax facility.level
 - Both facility names and severity levels must be from a short list of defined values
 - Facilities are defined for the kernel, for common utilities, for locally written program, and for others named "user"
 - Also use special keywords: * means all, none means nothing, comma to separate multiple facilities,; to separate multiple selectors
 - Facility names: auth, cron, daemon, ftp, kern, local0-7, lpr, mail, news, ...
 Severity levels (descending severity): emerg, alert, crit, err, warning, notice, info, debug

Syslog Actions

Syslog produces time stamp messages.

- Filename: appends the message to a file on the local machine
- @hostname: forwards the message to the syslogd on hostname
- fifoname: writes the message to the named pipe
- User1, user2: write the message to the screens of users if they are logged in
- *: write the message to all users currently logged in
- means no filesystem syncing after writing each log entry, this helps with performance, may miss some log upon crash

Linux "logrotate" tool

- "logrotate" rotates, truncates, manages logs
- The logrotate config file is /etc/logrotate.conf
- logrotate is normally run out of cron once a day
- Example logrotate options:
 - Compress all noncurrent versions of the log files
 - Rotate log files daily, weekly, or monthly
 - Emails error notification to a specified email address
 - Specify script to run after log is rotated
 - Include n versions of log

Condensing Logs

- Syslog great for sorting and routing log messages, at the end a bunch of log files are created
- Tools can scan log entries, match against a database of patterns of log messages, and find the important messages
- Example log postprocessor tools: swatch, logcheck, Splunk, SEC (Simple Event Correlator) etc.
 - swatch: 'simple watchdog' to monitor log files from syslog and others

Important Checking

Always check for important items, including:

- Most security-related messages need prompt review
 - Failed login, su, sudo attempts. Someone may forget passwords, but also want to prevent potential break-ins
- Messages about disks that have filled up
 - Full disks often bring useful work to a standstill
- Events that repeated many times

Logging Policies

- Logs are critical to security incident handling
- Ask the following when designing logging policies
 - How many systems and apps will be included?
 - What type of storage infrastructure is available?
 - How long must logs be retained?
 - What types of events are important?
- Record the following:
 - user name or ID, event success or failure, source address, data and time, sensitive data changed, event details

Log Centralization

- If site has >20 servers, consider centralized log collection and analysis. Reasons:
 - Simplified storage, automated analysis and alerting, improves attack visibility
- Storage strategy:
 - E.g., 30days on RAID array, 1 year on SAN, and 3 years on tape archives
- Access only to high-level sysadmins, access to central logs should be logged
- Small sites: rotate logs, regular archives