

CSE/ISE 311: Systems Administration

Why not NAT?

- If application encodes its IP address in applicationlevel payload
 - Arguably poor design, but the customer is always right
- · I want a service visible on the internet?
 - Example: Run a web server from home
 - Most NAT systems allow static routes
 - I can map port 80 from my router to my web box

16-7

CSE/ISE 311: Systems Administration

How to configure routing/NAT?

- Any system with 2 network interfaces can serve as a router
 - This is basically what wireless tethering does
- Here we discuss the basics of doing this on Linux
- Dedicated boxes tend to have higher performance, energy efficiency (more specialized hardware), and easier UI
 - Even if they use Linux internally

16-8

CSE/ISE 311: Systems Administration

Network Code

- Most lower-layer networking code is in the kernel, not in any application.
- · Whv?
 - Mostly performance: handle packet after an interrupt without a context switch
- Alternatives:
 - TCP/IP Offload: push some of the networking code into specialized hardware device
 - User-level drivers: historically inefficient, newer virtualization HW may improve this

6-9

Stony Brook University

CSE/ISE 311: Systems Administration

Network configuration

- Linux provides a number of utilities that configure the in-kernel networking code
- ifconfig: bring up a network device, assign an IP address, netmask, etc.
- route: configure routing tables on the system
- iptables: configure firewall rules, forwarding between interfaces, NAT, etc.

16-1

Stony Brook University

CSE/ISE 311: Systems Administration

Examples

 Suppose I want to configure a single network card to use IP 192.168.0.2/24

ifconfig eth0 192.168.0.2 netmask 255.255.255.0

Linux generally names network interfaces eth0, eth1, etc.

Examples adapted from: http://how-to.wikia.com/wiki/How_to_set_up_a_NAT_router_on_a_Linux-based_computer Stony Brook University

CSE/ISE 311: Systems Administration

Example (cont)

- Now I want to set up a router
 - One network card listening on my private network: 192.168.0.0/24
 - Another network card on the public network, provided IP address 130.245.153.3

ifconfig eth0 192.168.0.1 netmask 255.255.255.0 ifconfig eth1 130.245.153.3 netmask 255.255.255.0

16-12

CSE/ISE 311: Systems Administration

Stony Brook University

Example: Primary Server

• Add forward and reverse entries to /etc/bind/
named.conf.local

zone "example.com" {
 type master;
 file "/etc/bind/db.example.com";
};

zone "1.168.192.in-addr.arpa" {
 type master;
 file "/etc/bind/db.192";
};

Contents of db.192

;
; BIND reverse data file for local loopback interface;
; STTL 604800

@ IN SOA ns.example.com. root.example.com. (
2;
Serial 604800;
Refresh 86400;
Retry 2419200;
Expire 604800); Negative Cache TTL;
;
@ IN NS ns.
10 IN PTR ns.example.com.;
; also list other computers
21 IN PTR box.example.com.

