

Stony Brook University CSE/ISE 311: Systems Administration Introduction · Computer Security - protection of an automated information system in order to preserve the integrity, availability and confidentiality of information system resources, including hardware, software, firmware, information/data, and telecommunications

- · CIA Triad
 - Confidentiality: Data confidentiality, privacy
 - Integrity: Data integrity, system integrity, authenticity: origin integrity, accountability/non repudiation: ability to trace a security breach to a responsible party

20-3

General Consensus

- No OS is secure. Security breaches are commonplace
- · Need patience, vigilance, knowledge, persistence from all user, admin, management communities
- · Security is an ongoing battle that can never really be
- Security can make system more resistant to attacks
- Security often means less convenience and more constraints to users

20-4

There are many vulnerabilities, threats, risks, and attacks. We will focus on just three aspects

- · Social engineering
- · Software vulnerability
- · Configuration errors

Stony Brook University Social Engineering

CSE/ISE 311: Systems Administration

- Seemingly legitimate personnel or colleague ask for info Phishing: collect info via deceptive emails, instant msgs
- Often provide victim-specific info gleaned elsewhere to appear authentic and earn trust
- Need site policies on phone dos and don'ts, physical security, password selection, etc.
- Many organizations inform users that administrators will never request their passwords. Report immediately if such incidents occur

Unnecessary Services

- · Find out which services are running
 - Use the netstat command to find all listening sockets
- Find and identify services that use unknown ports
 Use the fuser, Isof, and then ps commands
- If not needed, stop it, and do not start it at boot
- Disable known vulnerable network protocols
 - FTP, Telnet
 - BSD "r" programs: rcp, rlogin, rsh

20-13

CSE/ISE 311: Systems Administration

Disable root ssh login

- · Sudo is good enough
- · A high-value target for brute-force guessing
- In /etc/ssh/sshd config:

PermitRootLogin no

Stony Brook University

CSE/ISE 311: Systems Administration

Remote Event Logging

- Syslog forwards log info to files, lists of users, or other hosts on network
- · Set up a secure host as a central logging machine
- Parse forwarded events and take proper action such as alerting admins when certain events occur
- Remote logging also prevents hackers from covering their tracks by rewriting or erasing log files on compromised systems

20-15

Stony Brook University

CSE/ISE 311: Systems Administration

Backups

- Regular backups of all partitions and store some backups off-site
- When storing tapes off-site, use a fireproof safe to deter theft, also use encryption
 - If using contract storage facility, take a physical tour

20-16

CSE/ISE 311: Systems Administration

Viruses and Worms

- Viruses: Rogue software program that attaches itself to other software programs or data files in order to be executed
- Worms: Independent programs that copy themselves from one computer to other computers over a network
- Linux/UNIX have been mostly immune from viruses
 - Less market share in desktop market, thus not a target
 - Access control in Unix may limit self-propagating worm or virus; need root privilege to alter system executables

20-17

Stony Brook University

CSE/ISE 311: Systems Administration

Don't neglect email and file servers!

- A Linux server can inadvertently distribute viruses to Windows machines on the network
- Run antivirus software on UNIX servers to protect site's Windows systems from Windows viruses
 - E.g., mail server scans inboxes, file server scans shared files
 - Supplement with desktop antivirus such as ClamAV: a popular, free antivirus product with signatures of thousands of viruses

3

Trojan Horses

- Trojan horses: programs that aren't what they seem to be. E.g., claims to draw a picture, but deletes files instead
- · Packages affected in the past
 - sendmail, tcpdump, OpenSSH, InterBase
 - Typically embed code that allows attackers to access the victim's systems at will
 - Fixed in a week or two, notified in mailing list
- · Obvious security problems are discovered quickly and widely discussed on the net
 - Google a software package before installing it

20-19

CSE/ISE 311: Systems Administration

Rootkits

- Rootkits: programs and patches that enable continued privileged access to a computer while hiding important system information such as process, disk, or network activity
 - Cover tracks and avoid detection
 - So the attacker can continue using the system to distribute software illegally, probe other networks, or launch attacks against other systems
 - Range from hacked Is and ps, to hacked kernel modules
- Tools to detect: host-based IDS e.g., OSSEC, special scripts e.g., chkrootkit
- Compromised machine is better reformatted than cleaned

CSE/ISE 311: Systems Administration

Packet Filtering, Passwords, Vigilance

- · Packet filtering: always filter network packets entering the system
 - Use packet-filtering routers, firewall, or filter software
- · Passwords
 - every account must have a hard-to-guess password
 - Never send plaintext reusable passwords across the net
 - Always use secure remote access software such as ssh
- Vigilance
 - Monitor system health, network connections, process table, status report regularly (daily)
 - Perform regular self-assessment

20-21

CSE/ISE 311: Systems Administration

Security Power Tools

Warning: Do not run these tools on someone else's system or network without permission! Instead use them for self-assessment/debugging.

- Port Scanner: Nmap, Nessus
- Password Cracker: John the ripper
- Network IDS Bro, Snort
- · HIDS: OSSEC

20-22

CSE/ISE 311: Systems Administration

Nmap

- · A network port scanner
- · Check a set of target hosts to see which TCP and UDP ports have servers listening on them
- A port is a numbered communication channel
 - An IP address identifies an entire machine
 - An IP address + a port # identifies a server, an application, or a conversation on that machine
 - Most network services are associated with "well known" port numbers. See /etc/services

IANA up-to-date port list: http://www.iana.org/assignments/port-numbers

Stony Brook University

CSE/ISE 311: Systems Administration

Nmap Output

Starting Nmap 5.21 (http://nmap.org) at 2010-04-01 11:19 IDT
Nmap scan report for Scanme, Nmap.org (64.13.134.52)
Host is up (0.186 latency)
tDNS record for 64.13.134.52: scanme.nmap.org
Not shown: 999 filtered ports
PORT STATE SERVICE
25/tcp closed smtp
53/tcp open domain
70/tcp closed somp
80/tcp open http
113/tcp closed subp

open http closed auth

Device type: general purpose Running: Linux 2.6.X OS details: Linux 2.6.15 - 2.6.26

OS detection performed. Please report any incorrect results at http://nmap.org/su Nmap done: 1 IP address (1 host up) scanned in 16.99 seconds [rootddarkstar -]# [

20-24

Interpreting Nmap Output

- The host Scanme.Nmap.Org is running three services: 53, 80, and 8009. Under "STATE"
 - open: ports that have servers listening
 - closed: ports with no server
 - unfiltered: ports in an unknown state
 - filtered: cannot be probed due to intervening packet filters
- May guess what OS is used based on implementation of TCP/IP
- May guess what software is behind a running open port

20-25

CSE/ISE 311: Systems Administration

Nessus

- Nessus: The most widely accepted and complete vulnerability scanner available
 - Scans for network servers running on any port and checks for known vulnerabilities instead of relying on version numbers
- · Closed source, proprietary, but freely available
- New vulnerability checks (called plugins) daily, freely available to non-commercial users

20-26

CSE/ISE 311: Systems Administration

John the Ripper

- A finder of insecure passwords from Solar Designer
- Implements several password-cracking algorithms
- It replaces an earlier tool called crack
- Can scan encrypted password files e.g., /etc/shadow

root@undecided:# john /etc/shadow
Loaded 3 password hashes with 3 different salts (FreeBSD MD5 [32/32])
badpass (tjones)
test (test)

Again, do not try it against others' passwords without approval

20-27

Stony Brook University

CSE/ISE 311: Systems Administration

What makes a secure password?

- · Hard to guess
- If I were an attacker, what would I guess first?
 - User name
 - Dictionary words
 - Oh, and I'd do obvious special character substitutions
 5 for an s, @ for an a, etc.
- What is the best password?
 - A truly random string
- How do I construct randomness?

Stony Brook University

CSE/ISE 311: Systems Administration

True randomness

- Humans can't produce random passwords. Let a program do it:
 - Diceware aggregates common words for important passwords
 - Lastpass generates un-rememberable passwords, has browser plugins
- Also, note that having published requirements, like "must have exactly one number" or "six to eight characters" can actually *limit* the search space of the attacker
 - If possible, best to keep private to your users

Requiring strong passwords

- · We've discussed PAM previously
- It has a nice module pam-cracklib that can reject weak passwords
- Add to /etc/pam.d/common-password: password requisite pam_oracklib.so retry=3 minlen=8 difok=3

CSE/ISE 311: Systems Administration

Aging passwords?

- "You must change your password every 3 months"
- · Good idea?
 - Pros: Mitigate risk of a very slow brute-force attack
 - Cons: Users dislike having to come up with new passwords, more likely to reuse a password

CSE/ISE 311: Systems Administration

Bro

- Bro: An open source network intrusion detection system (NIDS), monitors network traffic and looks for suspicious activities
- Inspects all traffic into and out of a network
 - Passive mode: report on suspicious activity
 - Active mode: injects traffic to disrupt malicious activity
- Sophisticate: correlate inbound and outbound traffic
- Configuration is complex and require good coding experience
- Capable: can supplement or replace a commercial NIDS

20-33

CSE/ISE 311: Systems Administration

Snort

- An open source NIDS and network IPS (intrusion prevention system). Basis for many commercial NIDS implementations
- Free base, subscription fee to access the most recent detection rules
 - Third-party extensions. E.g., Aanval
- Signature (i.e., a set of rules extracted for known attacks) based
- Less powerful than Bro, but much simpler to configure
 - A good "starter" NIDS

20-34

CSE/ISE 311: Systems Administration

OSSEC

- · Host-based intrusion detection (HIDS). Free software
 - Rootkit detection
 - Filesystem integrity checks
 - Log file analysis
 - Time-based alerting and active responses
- Monitors host activity, takes action according to a set of rules configured
- Two components
 - The manager (server): one per network. It stores fileintegrity check databases, logs, rules, configurations, events, auditing entries
 - Agents (clients): on each host and reports to the manager

20-35

Stony Brook University

CSE/ISE 311: Systems Administration

Potpourri

- Setuid
- Chroot
- Mandatory Access Control and SELinux
- SSH tunneling
- What to do if you are attacked?

6

Mandatory Access Control

- Mandatory Access Control (MAC)
 - have the control of all permissions in the hands of a security administrator
 - Do not allow users to modify any permissions, even on their own objects. Contrast traditional Unix access control
- · Users are assigned a security level from a structured hierarchy. Users can read/write items at the same level or lower, but not any higher level
 - User with "secret" access cannot read "top secret" objects
- · Least privilege allowing access only when necessary
 - Limit scope of breach to specific resources required by SW

CSE/ISE 311: Systems Administration

SELinux

- MAC is available to UNIX and Linux
 - Solaris trusted extension, HP-UX security containment, etc.
- Security-enhanced Linux (SELinux)
 - Implements MAC for Linux. Default component in Red Hat 4+
 - Adopted in environment with strict security requirements. E.g., government agencies
 - Policy is critical. E.g., to protect a daemon, a policy must enumerate all files, directories, and other objects to which the process needs access.
 - /etc/selinux/config controls SELinux configuration. Check / var/log/messages for SELinux errors, if problems with newly installed software

CSE/ISE 311: Systems Administration

SELinux Administration

- · SELinux is used by Fedora.
 - Users tolerate it mostly because they have good defaults
- · Make no mistake: writing SELinux policies is hard
 - If you have a one-off piece of software, you will probably pay RedHat consultants to write a policy for you
- · Still not a bad idea...

Stony Brook University

CSE/ISE 311: Systems Administration

SSH tunneling

- · A common firewall setting: Only let ssh in
- · What if I want to access a web server behind a firewall?
- · SSH to the rescue!

Stony Brook University

CSE/ISE 311: Systems Administration

Why SSH tunnels are ok

- · Still only expose ssh to outside world
- An authorized user can connect to services inside a firewall from a computer inside the firewall
- No risk beyond allowing ssh in the first place
- · Fairly easy to configure (previous example):

ssh -f user@example.com
-L 2000:internal-webserver.example.com:80 -N

Final advice

- Subscribe to mailing lists for software you administer
- They announce important security patches you may want to push out more aggressively
 - E.g., "This specially crafted packet to ssh drops you to a root shell"

CSE/ISE 311: Systems Administration

What to do when your site is attacked 9-step plan

- · Don't panic
- Decide on an appropriate level of response
- Collect away all available tracking information
- Assess degree of exposure
- Pull the plug
- Devise a recovery plan
- Communicate the recovery plan
- · Implement the recovery plan
- Report the incident to authorities

21-50