

Security

Portions courtesy Ellen Liu

Outline

- Introduction
- How security is compromised
- Security tips
- Security power tools
- Potpourri

Introduction

- Computer Security protection of an automated information system in order to preserve the integrity, availability and confidentiality of information system resources, including hardware, software, firmware, information/data, and telecommunications
- CIA Triad
 - Confidentiality: Data confidentiality, privacy
 - Integrity: Data integrity, system integrity, authenticity:
 origin integrity, accountability/non repudiation: ability to
 trace a security breach to a responsible party
 - Availability

General Consensus

- No OS is secure. Security breaches are commonplace
- Need patience, vigilance, knowledge, persistence from all user, admin, management communities
- Security is an ongoing battle that can never really be won
- Security can make system more resistant to attacks
- Security often means less convenience and more constraints to users

How Security is Compromised

There are many vulnerabilities, threats, risks, and attacks. We will focus on just three aspects

- Social engineering
- Software vulnerability
- Configuration errors

Social Engineering

- Seemingly legitimate personnel or colleague ask for info
- Phishing: collect info via deceptive emails, instant msgs
- Often provide victim-specific info gleaned elsewhere to appear authentic and earn trust
- Need site policies on phone dos and don'ts, physical security, password selection, etc.
- Many organizations inform users that administrators will never request their passwords. Report immediately if such incidents occur

Software Vulnerabilities

- Program errors or context dependencies
- Buffer overflow: allocate a fixed-size buffer to store data, without checking the actual size of data to be stored. If larger than buffer size, it overflows /overwrites adjacent memory space, may crash the program or execute arbitrary code
 - Some programming systems include automatic checks
- Input validation vulnerabilities

```
#!/usr/bin/perl
open(htmlfile, "/var/www/html/$argv[0]") or die "fail\n";
while(<htmlfile>) { print; }
close htmlfile;
$argv[0] is a user input. What if sb enters ../../etc/passwd
```

SQL Injection.

```
User-Id: srinivas
           Password: mypassword
     select * from Users where user_id= ' srinivas
                         and password = ' mypassword '
                      ' OR 1= 1; /*
              User-Id:
            Password:
       select * from Users where user_id= '` OR 1 = 1; /* '
                          and password = '*/--'
Evaluation of 1=1 will always be true
                                        9lessons.blogspot.com
/* */ enclose comments
```

-- precedes a comment within a single line

Configuration Errors

- Security vs. convenience
 - E.g., accounts without passwords, disks shared with the world, unprotected databases
- Boot loader password example
 - GRUB can be configured at install time to require a password, admins almost always decline the option
 - This leaves the system open to physical attack
 - With a password means if the system is rebooted, say, after a power outage, an admin has to drive to work to get the machine up and running again
- Do not leave ports open

CentOS Entering GRUB

Security Tips

- Patches
- Unnecessary services
- Remote event logging
- Backups
- Malware (viruses, worms, Trojans, rootkits)
- Packet filtering, passwords, vigilance

Patches

- Keeping the system updated with the latest patches is chore of the highest security value
- A recommended patching approach includes:
 - A regular schedule to install routine patches
 - A change plan to document impact, post-installation testing steps, and steps to back out the changes if needed
 - Understand what patches are relevant
 - Keep an inventory of apps and OS in use
 - Subscribe to vendor-specific lists/blogs, also general ones such as Bugtraq

Unnecessary Services

- Find out which services are running
 - Use the netstat command to find all listening sockets
- Find and identify services that use unknown ports
 - Use the fuser, Isof, and then ps commands
- If not needed, stop it, and do not start it at boot time
- Disable known vulnerable network protocols
 - FTP, Telnet
 - BSD "r" programs: rcp, rlogin, rsh

Disable root ssh login

- Sudo is good enough
- A high-value target for brute-force guessing
- In /etc/ssh/sshd_config:

PermitRootLogin no

Remote Event Logging

- Syslog forwards log info to files, lists of users, or other hosts on network
- Set up a secure host as a central logging machine
 - Parse forwarded events and take proper action such as alerting admins when certain events occur
- Remote logging also prevents hackers from covering their tracks by rewriting or erasing log files on compromised systems

Backups

 Regular backups of all partitions and store some backups off-site

- When storing tapes off-site, use a fireproof safe to deter theft, also use encryption
 - If using contract storage facility, take a physical tour

Viruses and Worms

- Viruses: Rogue software program that attaches itself to other software programs or data files in order to be executed
- Worms: Independent programs that copy themselves from one computer to other computers over a network
- Linux/UNIX have been mostly immune from viruses
 - Less market share in desktop market, thus not a target
 - Access control in Unix may limit self-propagating worm or virus; need root privilege to alter system executables

Don't neglect email and file servers!

- A Linux server can inadvertently distribute viruses to Windows machines on the network
- Run antivirus software on UNIX servers to protect site's Windows systems from Windows viruses
 - E.g., mail server scans inboxes, file server scans shared files
 - Supplement with desktop antivirus such as ClamAV: a popular, free antivirus product with signatures of thousands of viruses

Trojan Horses

- Trojan horses: programs that aren't what they seem to be.
 E.g., claims to draw a picture, but deletes files instead
- Packages affected in the past
 - sendmail, tcpdump, OpenSSH, InterBase
 - Typically embed code that allows attackers to access the victim's systems at will
 - Fixed in a week or two, notified in mailing list
- Obvious security problems are discovered quickly and widely discussed on the net
 - Google a software package before installing it

Rootkits

- Rootkits: programs and patches that enable continued privileged access to a computer while hiding important system information such as process, disk, or network activity
 - Cover tracks and avoid detection
 - So the attacker can continue using the system to distribute software illegally, probe other networks, or launch attacks against other systems
 - Range from hacked *ls* and *ps*, to hacked kernel modules
- Tools to detect: host-based IDS e.g., OSSEC, special scripts e.g., chkrootkit
- Compromised machine is better reformatted than cleaned

Packet Filtering, Passwords, Vigilance

- Packet filtering: always filter network packets entering the system
 - Use packet-filtering routers, firewall, or filter software
- Passwords
 - every account must have a hard-to-guess password
 - Never send plaintext reusable passwords across the net
 - Always use secure remote access software such as ssh
- Vigilance
 - Monitor system health, network connections, process table, status report regularly (daily)
 - Perform regular self-assessment

Security Power Tools

<u>Warning</u>: Do not run these tools on someone else's system or network without permission! Instead use them for self-assessment/debugging.

- Port Scanner: Nmap, Nessus
- Password Cracker: John the ripper
- Network IDS Bro, Snort
- HIDS: OSSEC

Nmap

- A network port scanner
- Check a set of target hosts to see which TCP and UDP ports have servers listening on them
- A port is a numbered communication channel
 - An IP address identifies an entire machine
 - An IP address + a port # identifies a server, an application, or a conversation on that machine
 - Most network services are associated with "well known" port numbers. See /etc/services

Nmap Output

```
[root@darkstar ~]#
[root@darkstar ~] # nmap -PN -sS -O Scanme.Nmap.Org
Starting Nmap 5.21 ( http://nmap.org ) at 2010-04-01 11:19 IDT
Nmap scan report for Scanme.Nmap.Org (64.13.134.52)
Host is up (0.18s latency).
rDNS record for 64.13.134.52; scanme.nmap.org
Not shown: 993 filtered ports
         STATE SERVICE
PORT
25/tcp closed smtp
53/tcp open domain
70/tcp closed gopher
80/tcp open http
113/tcp closed auth
8009/tcp open ajp13
31337/tcp closed Elite
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.15 - 2.6.26
OS detection performed. Please report any incorrect results at http://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 16.99 seconds
[root@darkstar ~]#
```

Interpreting Nmap Output

- The host Scanme.Nmap.Org is running three services:
 53, 80, and 8009. Under "STATE"
 - open: ports that have servers listening
 - closed: ports with no server
 - unfiltered: ports in an unknown state
 - filtered: cannot be probed due to intervening packet filters
- May guess what OS is used based on implementation of TCP/IP
- May guess what software is behind a running open port

Nessus

- Nessus: The most widely accepted and complete vulnerability scanner available
 - Scans for network servers running on any port and checks for known vulnerabilities instead of relying on version numbers
- Closed source, proprietary, but freely available
- New vulnerability checks (called plugins) daily, freely available to non-commercial users

John the Ripper

- A finder of insecure passwords from Solar Designer
- Implements several password-cracking algorithms
- It replaces an earlier tool called crack
- Can scan encrypted password files e.g., /etc/shadow

Again, do not try it against others' passwords without approval

What makes a secure password?

- Hard to guess
- If I were an attacker, what would I guess first?
 - User name
 - Dictionary words
 - Oh, and I'd do obvious special character substitutions
 - 5 for an s, @ for an a, etc.
- What is the best password?
 - A truly random string
- How do I construct randomness?

Truth from xkcd

~44 BITS OF ENTROPY
00000000000
0000000000
00000000000
00000000000
2 ⁴⁴ =550 YEARS AT 1000 GUESSES/SEC
DIFFICULTY TO GUESS:

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

True randomness

- Humans can't produce random passwords. Let a program do it:
 - Diceware aggregates common words for important passwords
 - Lastpass generates un-rememberable passwords, has browser plugins
- Also, note that having published requirements, like "must have exactly one number" or "six to eight characters" can actually *limit* the search space of the attacker
 - If possible, best to keep private to your users

Requiring strong passwords

- We've discussed PAM previously
- It has a nice module pam-cracklib that can reject weak passwords
- Add to /etc/pam.d/common-password:

password requisite pam cracklib.so retry=3 minlen=8 difok=3

Aging passwords?

- "You must change your password every 3 months"
- Good idea?
 - Pros: Mitigate risk of a very slow brute-force attack
 - Cons: Users dislike having to come up with new passwords, more likely to reuse a password

Bro

- Bro: An open source network intrusion detection system (NIDS), monitors network traffic and looks for suspicious activities
- Inspects all traffic into and out of a network
 - Passive mode: report on suspicious activity
 - Active mode: injects traffic to disrupt malicious activity
- Sophisticate: correlate inbound and outbound traffic
- Configuration is complex and require good coding experience
- Capable: can supplement or replace a commercial NIDS

Snort

- An open source NIDS and network IPS (intrusion prevention system). Basis for many commercial NIDS implementations
- Free base, subscription fee to access the most recent detection rules
 - Third-party extensions. E.g., Aanval
- Signature (i.e., a set of rules extracted for known attacks) based
- Less powerful than Bro, but much simpler to configure
 - A good "starter" NIDS

OSSEC

- Host-based intrusion detection (HIDS). Free software
 - Rootkit detection
 - Filesystem integrity checks
 - Log file analysis
 - Time-based alerting and active responses
- Monitors host activity, takes action according to a set of rules configured
- Two components
 - The manager (server): one per network. It stores fileintegrity check databases, logs, rules, configurations, events, auditing entries
 - Agents (clients): on each host and reports to the manager

Potpourri

- Setuid
- Chroot
- Mandatory Access Control and SELinux
- SSH tunneling
- What to do if you are attacked?

Setuid-to-Root Binary

```
$ stat -c 'Access: (%a/%A) Uid: (%u/%U) Gid: (%g/%G) ' /bin/bash Access: (0755/-rwxr-xr-x) Uid: (0/root) Gid: (0/root)

$ stat -c 'Access: (%a/%A) Uid: (%u/%U) Gid: (%g/%G) ' /bin/mount Access: (4755/-rwsr-xr-x) Uid: (0/root) Gid: (0/root)
```

- Setuid causes a binary to run as the file owner, rather than the user that issued the command
- Trusted setuid binaries export safe functionalities.
 - E.g., ping, mount, passwd, etc.
 - Administrator configures policies on safe subsets

Linux mount

```
sys mount() {
               if(!capable(CAP SYS ADMIN))
                  return -EPERM;
     Kernel
                      /* Parse arguments */
     <u>User</u>
                     if(ruid == 0
      /etc/fstab
                       user mount ok (args)
                                              Setuid
                          sys mount (args
/dev/cdrom /mnt/cdrom
                                             _to Root
iso9660 user,ro 0 0
               /bin/mount /dev/cdrom /mnt/cdrom
```


Vulnerable mount

```
sys open()
          if(!perm check(file, euid))
            return -EPERM;
Kernel
                /* Parse arguments */
<u>User</u>
                if(ruid == 0
/etc/fstab
                  user mount ok (arks
                    sys mount (args
                                       _to Root
/etc/shadow
         7bin/mount /dev/cdrom /mnt/cdrom
```

Principle of Least Privilege

- Least authority necessary to perform duties
- Setuid-root violates least privilege principle
 - Empowers binaries to issue privileged system calls
- Kernel policy conflicts with the system policy
 - Kernel: only root can mount
 - System: any user can mount at safe locations
- Setuid binary mount bridges the gap

Advice

- Think twice before installing setuid-root programs
 - Some are required, but I would minimize this
- Mount non-root file systems with nosuid
 - Avoid someone adding a setuid binary from a cdrom or flash drive

chroot

- Confine a process to a given directory
- Useful for sandboxing (or jailing) a program
 - Although you do have to create a complete environment
- Other useful tools to sandbox an application:
 - Chromium sandbox, plash, etc.

Mandatory Access Control

- Mandatory Access Control (MAC)
 - have the control of all permissions in the hands of a security administrator
 - Do not allow users to modify any permissions, even on their own objects. Contrast traditional Unix access control
- Users are assigned a security level from a structured hierarchy. Users can read/write items at the same level or lower, but not any higher level
 - User with "secret" access cannot read "top secret" objects
- Least privilege allowing access only when necessary
 - Limit scope of breach to specific resources required by SW

SELinux

- MAC is available to UNIX and Linux
 - Solaris trusted extension, HP-UX security containment, etc.
- Security-enhanced Linux (SELinux)
 - Implements MAC for Linux. Default component in Red Hat 4+
 - Adopted in environment with strict security requirements.
 E.g., government agencies
 - Policy is critical. E.g., to protect a daemon, a policy must enumerate all files, directories, and other objects to which the process needs access.
 - /etc/selinux/config controls SELinux configuration. Check / var/log/messages for SELinux errors, if problems with newly installed software

SELinux Administration

- SELinux is used by Fedora,
 - Users tolerate it mostly because they have good defaults
- Make no mistake: writing SELinux policies is hard
 - If you have a one-off piece of software, you will probably pay RedHat consultants to write a policy for you
- Still not a bad idea...

SSH tunneling

- A common firewall setting: Only let ssh in
- What if I want to access a web server behind a firewall?
- SSH to the rescue!

An SSH Tunnel

Why SSH tunnels are ok

- Still only expose ssh to outside world
- An authorized user can connect to services inside a firewall from a computer inside the firewall
- No risk beyond allowing ssh in the first place
- Fairly easy to configure (previous example):

```
ssh -f user@example.com
-L 2000:internal-webserver.example.com:80 -N
```

Final advice

- Subscribe to mailing lists for software you administer
- They announce important security patches you may want to push out more aggressively
 - E.g., "This specially crafted packet to ssh drops you to a root shell"

What to do when your site is attacked

9-step plan

- Don't panic
- Decide on an appropriate level of response
- Collect away all available tracking information
- Assess degree of exposure
- Pull the plug
- Devise a recovery plan
- Communicate the recovery plan
- Implement the recovery plan
- Report the incident to authorities