
2/18/25

1

Page Frame Reclaiming
Don Porter
CSE 506

1

Last time…

ò We saw how you go from a file or process to the
constituent memory pages making it up

ò Where in memory is page 2 of file “foo”?

ò Or, where is address 0x1000 in process 100?

ò Today, we look at reverse mapping:

ò Given page X, what has a reference to it?

ò Then we will look at page reclamation:

ò Which page is the best candidate to reuse?

2

Physical page
management

ò Reminder: Similar to JOS, Linux stores physical page
descriptors in an array

ò Contents are somewhat different, but same idea

3

Shared memory

ò Recall: A vma represents a region of a process’s virtual
address space

ò A vma is private to a process

ò Yet physical pages can be shared

ò The pages caching libc in memory

ò Even anonymous application data pages can be shared,
after a copy-on-write fork()

ò So far, we have elided this issue. No longer!

4

Anonymous memory

ò When anonymous memory is mapped, a vma is created

ò Pages are added on demand (laziness rules!)

ò When the first page is added, an anon_vma structure is
also created

ò vma and page descriptor point to anon_vma

ò anon_vma stores all mapping vmas in a circular linked list

ò When a mapping becomes shared (e.g., COW fork),
create a new VMA, link it on the anon_vma list

5

Example

Physical memory

Process A Process B

Virtual memory

Page Tables
Page Tables

Physical page descriptors

vma vma
anon
vma

6

2/18/25

2

Reverse mapping

ò Suppose I pick a physical page X, what is it being used
for?

ò Many ways you could represent this

ò Remember, some systems have a lot of physical memory

ò So we want to keep fixed, per-page overheads low

ò Can dynamically allocate some extra bookkeeping

7

Linux strategy

ò Add 2 fields to each page descriptor

ò _mapcount: Tracks the number of active mappings

ò -1 == unmapped

ò 0 == single mapping (unshared)

ò 1+ == shared

ò mapping: Pointer to the owning object

ò Address space (file/device) or anon_vma (process)

ò Least Significant Bit encodes the type (1 == anon_vma)

8

Anonymous page lookup

ò Given a physical address, page descriptor index is just simple
division by page size

ò Given a page descriptor:

ò Look at _mapcount to see how many mappings. If 0+:

ò Read mapping to get pointer to the anon_vma

ò Be sure to check, mask out low bit

ò Iterate over vmas on the anon_vma list

ò Linear scan of page table entries for each vma

ò vma-> mm -> pgdir

9

Example

Physical memory

Process A Process B

Virtual memory

Page Tables
Page Tables

Physical page descriptors

vma vma
anon
vma

Page 0x10000
Divide by 0x1000 (4k)

Page 0x10
_mapcount: 1

mapping:
(anon vma + low bit)

foreach vma

Linear scan
of page tables

10

File vs. anon mappings

ò Given a page mapping a file, we store a pointer in its page
descriptor to the inode address space

ò Linear scan of the radix tree to figure out what offset in the file
is being mapped

ò Now to find all processes mapping the file…

ò So, let’s just do the same thing for files as anonymous
mappings, no?

ò Could just link all VMAs mapping a file into a linked list on the
inode’s address_space.

ò 2 complications:

11

Complication 1

ò Not all file mappings map the entire file

ò Many map only a region of the file

ò So, if I am looking for all mappings of page 4 of a file a
linear scan of each mapping may have to filter vmas that
don’t include page 4

12

2/18/25

3

Complication 2

ò Intuition: anonymous mappings won’t be shared much

ò How many children won’t exec a new executable?

ò In contrast, (some) mapped files will be shared a lot

ò Example: libc

ò Problem: Lots of entries on the list + many that might not
overlap

ò Solution: Need some sort of filter

13

Priority Search Tree

ò Idea: binary search tree that uses overlapping ranges as
node keys

ò Bigger, enclosing ranges are the parents, smaller ranges are
children

ò Not balanced (in Linux, some uses balance them)

ò Use case: Search for all ranges that include page N

ò Most of that logarithmic lookup goodness you love from
tree-structured data!

14

Figure 17-2
(from Understanding the Linux Kernel)

ò Radix – start of interval, heap = last page

ò Calculate size with math – handy memoize

15

PST + vmas

ò Each node in the PST contains a list of vmas mapping
that interval

ò Only one vma for unusual mappings

ò So what about duplicates (ex: all programs using libc)?

ò A very long list on the (0, filesz, filesz) node

ò I.e., the root of the tree

16

Reverse lookup, review

ò Given a page, how do I find all mappings?

17

Problem 2: Reclaiming

ò Until there is a problem, kernel caches and processes can
go wild allocating memory

ò Sometimes there is a problem, and the kernel needs to
reclaim physical pages for other uses

ò Low memory, hibernation, free memory below a “goal”

ò Which ones to pick?

ò Goal: Minimal performance disruption on a wide range
of systems (from phones to supercomputers)

18

2/18/25

4

Types of pages

ò Unreclaimable – free pages (obviously), pages pinned in
memory by a process, temporarily locked pages, pages
used for certain purposes by the kernel

ò Swappable – anonymous pages, tmpfs, shared IPC
memory

ò Syncable – cached disk data

ò Discardable – unused pages in cache allocators

19

General principles

ò Free harmless pages first

ò Steal pages from user programs, especially those that haven’t
been used recently

ò When a page is reclaimed, remove all references at once

ò Removing one reference is a waste of time

ò Temporal locality: get pages that haven’t been used in a while

ò Laziness: Favor pages that are “cheaper” to free

ò Ex: Waiting on write back of dirty data takes time

20

Another view

ò Suppose the system is bogging down because memory is
scarce

ò The problem is only going to go away permanently if a
process can get enough memory to finish

ò Then it will free memory permanently!

ò When the OS reclaims memory, we want to avoid
harming progress by taking away memory a process
really needs to make progress

ò If possible, avoid this with educated guesses

21

LRU lists

ò All pages are on one of 2 LRU lists: active or inactive

ò Intuition: a page access causes it to be switched to the
active list

ò A page that hasn’t been accessed in a while moves to the
inactive list

22

How to detect use?

ò Tag pages with “last access” time

ò Obviously, explicit kernel operations (mmap, mprotect,
read, etc.) can update this

ò What about when a page is mapped?

ò Remember those hardware access bits in the page table?

ò Periodically clear them; if they don’t get re-set by the
hardware, you can assume the page is “cold”

ò If they do get set, it is “hot”

23

Big picture

ò Kernel keeps a heuristic “target” of free pages

ò Makes a best effort to maintain that target; can fail

ò Kernel gets really worried when allocations start failing

ò In the worst case, starts out-of-memory (OOM) killing
processes until memory can be reclaimed

24

2/18/25

5

Editorial

ò Choosing the “right” pages to free is a problem without a
lot of good science behind it

ò Many systems don’t cope well with low-memory
conditions

ò But they need to get better

ò (Think phones and other small devices)

ò Important problem – perhaps an opportunity?

25

Summary

ò Reverse mappings for shared:

ò Anonymous pages

ò File-mapping pages

ò Basic tricks of page frame reclaiming

ò LRU lists

ò Free cheapest pages first

ò Unmap all at once

ò Etc.

26

