
Process Address Spaces
and

Binary Formats
Don Porter – CSE 506

Logical Diagram

Memory
Management

CPU
Scheduler

User

Kernel

Hardware

Binary
Formats

Consistency

System Calls

Interrupts Disk Net

RCU File System

Device
Drivers

Networking Sync

Memory
Allocators Threads Today’s Lecture

Review

ò  We’ve seen how paging and segmentation work on x86

ò  Maps logical addresses to physical pages

ò  These are the low-level hardware tools

ò  This lecture: build up to higher-level abstractions

ò  Namely, the process address space

Definitions (can vary)

ò  Process is a virtual address space

ò  1+ threads of execution work within this address space

ò  A process is composed of:

ò  Memory-mapped files

ò  Includes program binary

ò  Anonymous pages: no file backing

ò  When the process exits, their contents go away

Address Space Layout

ò  Determined (mostly) by the application

ò  Determined at compile time

ò  Link directives can influence this

ò  See kern/kernel.ld in JOS; specifies kernel starting address

ò  OS usually reserves part of the address space to map
itself

ò  Upper GB on x86 Linux

ò  Application can dynamically request new mappings from
the OS, or delete mappings

Simple Example

Virtual Address Space

0 0xffffffff

hello libc.so heap

ò  “Hello world” binary specified load address

ò  Also specifies where it wants libc

ò  Dynamically asks kernel for “anonymous” pages for its
heap and stack

stk

In practice

ò  You can see (part of) the requested memory layout of a program
using ldd:

$ ldd /usr/bin/git

 linux-vdso.so.1 => (0x00007fff197be000)

 libz.so.1 => /lib/libz.so.1 (0x00007f31b9d4e000)

 libpthread.so.0 => /lib/libpthread.so.0
 (0x00007f31b9b31000)

 libc.so.6 => /lib/libc.so.6 (0x00007f31b97ac000)

 /lib64/ld-linux-x86-64.so.2 (0x00007f31b9f86000)

Problem 1: How to
represent in the kernel?

ò  What is the best way to represent the components of a
process?

ò  Common question: is mapped at address x?

ò  Page faults, new memory mappings, etc.

ò  Hint: a 64-bit address space is seriously huge

ò  Hint: some programs (like databases) map tons of data

ò  Others map very little

ò  No one size fits all

Sparse representation

ò  Naïve approach might make a big array of pages

ò  Mark empty space as unused

ò  But this wastes OS memory

ò  Better idea: only allocate nodes in a data structure for
memory that is mapped to something

ò  Kernel data structure memory use proportional to
complexity of address space!

Linux: vm_area_struct

ò  Linux represents portions of a process with a vm_area_struct,
or vma

ò  Includes:

ò  Start address (virtual)

ò  End address (first address after vma) – why?
ò  Memory regions are page aligned

ò  Protection (read, write, execute, etc) – implication?

ò  Different page protections means new vma

ò  Pointer to file (if one)

ò  Other bookkeeping

Simple list representation
Process Address Space 0 0xffffffff

vma
/bin/ls

start end

next

vma
anon
(data)

vma
libc.so

mm_struct
(process)

Simple list

ò  Linear traversal – O(n)

ò  Shouldn’t we use a data structure with the smallest O?

ò  Practical system building question:

ò  What is the common case?

ò  Is it past the asymptotic crossover point?

ò  If tree traversal is O(log n), but adds bookkeeping overhead,
which makes sense for:

ò  10 vmas: log 10 =~ 3; 10/2 = 5; Comparable either way

ò  100 vmas: log 100 starts making sense

Common cases

ò  Many programs are simple

ò  Only load a few libraries

ò  Small amount of data

ò  Some programs are large and complicated

ò  Databases

ò  Linux splits the difference and uses both a list and a red-
black tree

Red-black trees

ò  (Roughly) balanced tree

ò  Read the wikipedia article if you aren’t familiar with
them

ò  Popular in real systems

ò  Asymptotic == worst case behavior

ò  Insertion, deletion, search: log n

ò  Traversal: n

Optimizations

ò  Using an RB-tree gets us logarithmic search time

ò  Other suggestions?

ò  Locality: If I just accessed region x, there is a reasonably
good chance I’ll access it again

ò  Linux caches a pointer in each process to the last vma
looked up

ò  Source code (mm/mmap.c) claims 35% hit rate

Memory mapping recap

ò  VM Area structure tracks regions that are mapped

ò  Efficiently represent a sparse address space

ò  On both a list and an RB-tree

ò  Fast linear traversal

ò  Efficient lookup in a large address space

ò  Cache last lookup to exploit temporal locality

Linux APIs

ò  mmap(void *addr, size_t length, int prot, int flags, int fd,
 off_t offset);

ò  munmap(void *addr, size_t length);

ò  How to create an anonymous mapping?

ò  What if you don’t care where a memory region goes (as
long as it doesn’t clobber something else)?

Example 1:

ò  Let’s map a 1 page (4k) anonymous region for data, read-
write at address 0x40000

ò  mmap(0x40000, 4096, PROT_READ|PROT_WRITE,
 MAP_ANONYMOUS, -1, 0);

ò  Why wouldn’t we want exec permission?

Insert at 0x40000
0x1000-0x4000

mm_struct
(process)

0x20000-0x21000 0x100000-0x10f000

1)  Is anything already mapped at 0x40000-0x41000?
2)  If not, create a new vma and insert it
3)  Recall: pages will be allocated on demand

Scenario 2

ò  What if there is something already mapped there with
read-only permission?

ò  Case 1: Last page overlaps

ò  Case 2: First page overlaps

ò  Case 3: Our target is in the middle

Case 1: Insert at 0x40000
0x1000-0x4000

mm_struct
(process)

0x20000-0x41000 0x100000-0x10f000

1)  Is anything already mapped at 0x40000-0x41000?
2)  If at the end and different permissions:

1)  Truncate previous vma
2)  Insert new vma

3)  If permissions are the same, one can replace pages
and/or extend previous vma

Case 3: Insert at 0x40000
0x1000-0x4000

mm_struct
(process)

0x20000-0x50000 0x100000-0x10f000

1)  Is anything already mapped at 0x40000-0x41000?
2)  If in the middle and different permissions:

1)  Split previous vma
2)  Insert new vma

Demand paging

ò  Creating a memory mapping (vma) doesn’t necessarily
allocate physical memory or setup page table entries

ò  What mechanism do you use to tell when a page is needed?

ò  It pays to be lazy!

ò  A program may never touch the memory it maps.
ò  Examples?

ò  Program may not use all code in a library

ò  Save work compared to traversing up front

ò  Hidden costs? Optimizations?
ò  Page faults are expensive; heuristics could help performance

Unix fork()

ò  Recall: this function creates and starts a copy of the process;
identical except for the return value

ò  Example:

int pid = fork();!

if (pid == 0) {!

!// child code!

} else if (pid > 0) { !

!// parent code!

} else // error!

Copy-On-Write (COW)

ò  Naïve approach would march through address space and
copy each page

ò  Most processes immediately exec() a new binary
without using any of these pages

ò  Again, lazy is better!

How does COW work?

ò  Memory regions:

ò  New copies of each vma are allocated for child during fork

ò  As are page tables

ò  Pages in memory:

ò  In page table (and in-memory representation), clear write bit, set
COW bit

ò  Is the COW bit hardware specified?

ò  No, OS uses one of the available bits in the PTE

ò  Make a new, writeable copy on a write fault

New Topic: Stacks

Idiosyncrasy 1: Stacks
Grow Down

ò  In Linux/Unix, as you add frames to a stack, they
actually decrease in virtual address order

ò  Example:
main()

foo()

bar()

Stack “bottom” – 0x13000

0x12600

0x12300

0x11900

Exceeds stack
page OS allocates

a new page

Problem 1: Expansion

ò  Recall: OS is free to allocate any free page in the virtual
address space if user doesn’t specify an address

ò  What if the OS allocates the page below the “top” of the
stack?

ò  You can’t grow the stack any further

ò  Out of memory fault with plenty of memory spare

ò  OS must reserve stack portion of address space

ò  Fortunate that memory areas are demand paged

ò  Unix has been around longer than paging

ò  Remember data segment abstraction?

ò  Unix solution:

ò  Stack and heap meet in the middle

ò  Out of memory when they meet

Heap Stack

Feed 2 Birds with 1 Scone

Data Segment

Grows Grows

But now we have paging

ò  Unix and Linux still have a data segment abstraction

ò  Even though they use flat data segmentation!

ò  sys_brk() adjusts the endpoint of the heap

ò  Still used by many memory allocators today

Windows Comparison

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess,
 __in_opt LPVOID lpAddress,

 __in SIZE_T dwSize,
 __in DWORD flAllocationType,
 __in DWORD flProtect);

ò  Library function applications program to

ò  Provided by ntdll.dll – the rough equivalent of Unix libc

ò  Implemented with an undocumented system call

Windows Comparison

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess,
 __in_opt LPVOID lpAddress,

 __in SIZE_T dwSize,
 __in DWORD flAllocationType,
 __in DWORD flProtect);

ò  Programming environment differences:

ò  Parameters annotated (__out, __in_opt, etc), compiler
checks

ò  Name encodes type, by convention

ò  dwSize must be page-aligned (just like mmap)

Windows Comparison

ò  LPVOID VirtualAllocEx(__in HANDLE hProcess,
 __in_opt LPVOID lpAddress,

 __in SIZE_T dwSize,
 __in DWORD flAllocationType,
 __in DWORD flProtect);

ò  Different capabilities

ò  hProcess doesn’t have to be you! Pros/Cons?

ò  flAllocationType – can be reserved or committed

ò  And other flags

Reserved memory

ò  An explicit abstraction for cases where you want to
prevent the OS from mapping anything to an address
region

ò  To use the region, it must be remapped in the committed
state

ò  Why?

ò  My speculation: Gives the OS more information for
advanced heuristics than demand paging

Part 1 Summary

ò  Understand what a vma is, how it is manipulated in
kernel for calls like mmap

ò  Demand paging, COW, and other optimizations

ò  brk and the data segment

ò  Windows VirtualAllocEx() vs. Unix mmap()

Part 2: Program Binaries

ò  How are address spaces represented in a binary file?

ò  How are processes loaded?

Linux: ELF

ò  Executable and Linkable Format

ò  Standard on most Unix systems

ò  And used in JOS

ò  You will implement part of the loader in lab 3

ò  2 headers:

ò  Program header: 0+ segments (memory layout)

ò  Section header: 0+ sections (linking information)

Helpful tools

ò  readelf - Linux tool that prints part of the elf headers

ò  objdump – Linux tool that dumps portions of a binary

ò  Includes a disassembler; reads debugging symbols if
present

Key ELF Segments

ò  For once, not the same thing as hardware segmentation

ò  Similar idea, though

ò  .text – Where read/execute code goes

ò  Can be mapped without write permission

ò  .data – Programmer initialized read/write data

ò  Ex: a global int that starts at 3 goes here

ò  .bss – Uninitialized data (initially zero by convention)

ò  Many other segments

Sections

ò  Also describe text, data, and bss segments

ò  Plus:

ò  Procedure Linkage Table (PLT) – jump table for libraries

ò  .rel.text – Relocation table for external targets

ò  .symtab – Program symbols

How ELF Loading Works

ò  execve(“foo”, …)

ò  Kernel parses the file enough to identify whether it is a
supported format

ò  Kernel loads the text, data, and bss sections

ò  ELF header also gives first instruction to execute

ò  Kernel transfers control to this application instruction

Static vs. Dynamic
Linking

ò  Static Linking:

ò  Application binary is self-contained

ò  Dynamic Linking:

ò  Application needs code and/or variables from an external
library

ò  How does dynamic linking work?

ò  Each binary includes a “jump table” for external
references

ò  Jump table is filled in at run time by the linker

Jump table example

ò  Suppose I want to call foo() in another library

ò  Compiler allocates an entry in the jump table for foo

ò  Say it is index 3, and an entry is 8 bytes

ò  Compiler generates local code like this:

ò  mov rax, 24(rbx) // rbx points to the
 // jump table

ò  call *rax
ò  Linker initializes the jump tables at runtime

Dynamic Linking
(Overview)

ò  Rather than loading the application, load the linker
(ld.so), give the linker the actual program as an argument

ò  Kernel transfers control to linker (in user space)

ò  Linker:

ò  1) Walks the program’s ELF headers to identify needed
libraries

ò  2) Issue mmap() calls to map in said libraries

ò  3) Fix the jump tables in each binary

ò  4) Call main()

Recap

ò  Understand basics of program loading

ò  OS does preliminary executable parsing, maps in
program and maybe dynamic linker

ò  Linker does needed fixup for the program to work

Summary

ò  We’ve seen a lot of details on how programs are
represented:

ò  In the kernel when running

ò  On disk in an executable file

ò  And how they are bootstrapped in practice

ò  Will help with lab 3

