
CSE	506:	Opera.ng	Systems	

The	Art	and	Science	of	Memory	
Alloca4on	
Don	Porter	

1	

CSE	506:	Opera.ng	Systems	

Logical	Diagram	

Memory		
Management	

CPU	
Scheduler	

User	

Kernel	

Hardware	

Binary	
Formats	

Consistency	

System	Calls	

Interrupts	 Disk	 Net	

RCU	 File	System	

Device	
Drivers	

Networking	 Sync	

Memory	
Allocators	 Threads	

Today’s	Lecture	

2	

CSE	506:	Opera.ng	Systems	

Lecture	goal	
•  This	lectures	is	about	alloca4ng	small	objects	
–  Future	lectures	will	talk	about	alloca4ng	physical	pages	

•  Understand	how	memory	allocators	work	
–  In	both	kernel	and	applica4ons	

•  Understand	trade-offs	and	current	best	prac4ces	

3	

CSE	506:	Opera.ng	Systems	

libc.so	heap	

Big	Picture	

int main () {
 struct foo *x = malloc(sizeof(struct foo));
 ...

void * malloc (ssize_t n) {
 if (heap empty)
 mmap(); // add pages to heap
 find a free block of size n;
}

4	

Virtual	Address	Space	

0	 0xffffffff	

Code	
(.text)	 heap	stack	heap	

(empty)	
n

CSE	506:	Opera.ng	Systems	

Today’s	Lecture	
•  How	to	implement	malloc()	or	new
–  Note	that	new	is	essen4ally	malloc	+	constructor	
–  malloc()	is	part	of	libc,	and	executes	in	the	applica4on	

•  malloc()	gets	pages	of	memory	from	the	OS	via	
mmap()	and	then	sub-divides	them	for	the	
applica4on	

•  The	next	lecture	will	talk	about	how	the	kernel	
manages	physical	pages		
–  For	internal	use,	or	to	allocate	to	applica4ons	

5	

CSE	506:	Opera.ng	Systems	

Bump	allocator	

•  malloc	(6)	
•  malloc	(12)	
•  malloc(20)	
•  malloc	(5)	

6	

CSE	506:	Opera.ng	Systems	

Bump	allocator	
•  Simply	“bumps”	up	the	free	pointer	
•  How	does	free()	work?		It	doesn’t	
– Well,	you	could	try	to	recycle	cells	if	you	wanted,	but	
complicated	bookkeeping	

•  Controversial	observa4on:	This	is	ideal	for	simple	
programs	
–  You	only	care	about	free()	if	you	need	the	memory	for	
something	else	

7	

CSE	506:	Opera.ng	Systems	

Assume	memory	is	limited	
•  Hoard:	best-of-breed	concurrent	allocator	
–  User	applica4ons	
–  Seminal	paper	

•  We’ll	also	talk	about	how	Linux	allocates	its	own	
memory	

8	

CSE	506:	Opera.ng	Systems	

Overarching	issues	
•  Fragmenta4on	
•  Alloca4on	and	free	latency	
–  Synchroniza4on/Concurrency	

•  Implementa4on	complexity	
•  Cache	behavior	
–  Alignment	(cache	and	word)	
–  Coloring	

9	

CSE	506:	Opera.ng	Systems	

Fragmenta4on	
•  Undergrad	review:	What	is	it?		Why	does	it	happen?	
•  What	is		
–  Internal	fragmenta4on?	

•  Wasted	space	when	you	round	an	alloca4on	up	

–  External	fragmenta4on?	
•  When	you	end	up	with	small	chunks	of	free	memory	that	are	too	
small	to	be	useful	

•  Which	kind	does	our	bump	allocator	have?	

10	

CSE	506:	Opera.ng	Systems	

Hoard:	Superblocks	
•  At	a	high	level,	allocator	operates	on	superblocks	
–  Chunk	of	(virtually)	con4guous	pages	
–  All	objects	in	a	superblock	are	the	same	size	

•  A	given	superblock	is	treated	as	an	array	of	same-
sized	objects	
–  They	generalize	to	“powers	of	b	>	1”;		
–  In	usual	prac4ce,	b	==	2	

11	

CSE	506:	Opera.ng	Systems	

Superblock	intui4on	
256	byte		

object	heap	

4	KB	page	

(Free	space)	

4	KB	page	

next	 next	 next	

next	 next	 next	

Free	 next	

Free	list	in	
LIFO	order	

Each	page	an	
array	of	
objects	

Store	list	pointers	
in	free	objects!	

12	

CSE	506:	Opera.ng	Systems	

Superblock	Intui4on	

malloc (8);

1)  Find	the	nearest	power	of	2	heap	(8)	

2)  Find	free	object	in	superblock	

3)  Add	a	superblock	if	needed.		Goto	2.	

13	

CSE	506:	Opera.ng	Systems	

malloc	(200)	
256	byte		

object	heap	

4	KB	page	

(Free	space)	

4	KB	page	

next	 next	 next	

next	 next	 next	

Free	 next	

Pick	first	free	
object	

14	

CSE	506:	Opera.ng	Systems	

Superblock	example	
•  Suppose	my	program	allocates	objects	of	sizes:	
–  4,	5,	7,	34,	and	40	bytes.	

•  How	many	superblocks	do	I	need	(if	b	==2)?	
–  3	–	(4,	8,	and	64	byte	chunks)	

•  If	I	allocate	a	5	byte	object	from	an	8	byte	
superblock,	doesn’t	that	yield	internal	
fragmenta4on?	
–  Yes,	but	it	is	bounded	to	<	50%	
–  Give	up	some	space	to	bound	worst	case	and	complexity	

15	

CSE	506:	Opera.ng	Systems	

High-level	strategy	
•  Allocate	a	heap	for	each	processor,	and	one	shared	
heap	
–  Note:	not	threads,	but	CPUs	
–  Can	only	use	as	many	heaps	as	CPUs	at	once	
–  Requires	some	way	to	figure	out	current	processor	

•  Try	per-CPU	heap	first	
•  If	no	free	blocks	of	right	size,	then	try	global	heap	
– Why	try	this	first?	

•  If	that	fails,	get	another	superblock	for	per-CPU	heap	

16	

CSE	506:	Opera.ng	Systems	

Example:	malloc()	on	CPU	0	

17	

CPU	0	Heap	 CPU	1	Heap	

Global	Heap	
First,	try		
per-CPU	
heap	

Second,	try		
global	heap	

If	global	heap	
full,	grow	

per-CPU	heap	

CSE	506:	Opera.ng	Systems	

Big	objects	
•  If	an	object	size	is	bigger	than	half	the	size	of	a	
superblock,	just	mmap()	it	
–  Recall,	a	superblock	is	on	the	order	of	pages	already	

•  What	about	fragmenta4on?	
–  Example:	4097	byte	object	(1	page	+	1	byte)	
–  Argument:	More	trouble	than	it	is	worth	

•  Extra	bookkeeping,	poten4al	conten4on,	and	poten4al	bad	cache	
behavior		

18	

CSE	506:	Opera.ng	Systems	

Memory	free	
•  Simply	put	back	on	free	list	within	its	superblock	
•  How	do	you	tell	which	superblock	an	object	is	from?	
–  Suppose	superblock	is	8k	(2pages)	

•  And	always	mapped	at	an	address	evenly	divisible	by	8k	

–  Object	at	address	0x431a01c		
–  Just	mask	out	the	low	13	bits!	
–  Came	from	a	superblock	that	starts	at	0x431a000	

•  Simple	math	can	tell	you	where	an	object	came	
from!	

19	

CSE	506:	Opera.ng	Systems	

LIFO	
•  Why	are	objects	re-allocated	most-recently	used	
first?	
–  Aren’t	all	good	OS	heuris4cs	FIFO?	
– More	likely	to	be	already	in	cache	(hot)	
–  Recall	from	undergrad	architecture	that	it	takes	quite	a	
few	cycles	to	load	data	into	cache	from	memory	

–  If	it	is	all	the	same,	let’s	try	to	recycle	the	object	already	in	
our	cache	

20	

CSE	506:	Opera.ng	Systems	

Hoard	Simplicity	
•  The	bookkeeping	for	alloc	and	free	is	straighsorward	
– Many	allocators	are	quite	complex	(looking	at	you,	slab)	

•  Overall:	(#	CPUs	+	1)	heaps	

–  Per	heap:	1	list	of	superblocks	per	object	size	(22—211)	

–  Per	superblock:		
•  Need	to	know	which/how	many	objects	are	free	

–  LIFO	list	of	free	blocks	

21	

CSE	506:	Opera.ng	Systems	

CPU	0	Heap,	Illustrated	

22	One	of	these	per	CPU	(and	one	shared)	

Free	
List:	

Order:	 2	

Free	
List:	

3	

Free	
List:	

4	

Free	
List:	

5	

Free	
List:	

11	

.	.	.	

Free	List:	LIFO	
order	

Some	sizes	can	
be	empty	

CSE	506:	Opera.ng	Systems	

Locking	
•  On	alloc	and	free,	lock	superblock	and	per-CPU	heap	
•  	Why?	
–  An	object	can	be	freed	from	a	different	CPU	than	it	was	
allocated	on	

•  Alterna4ve:		
– We	could	add	more	bookkeeping	for	objects	to	move	to	
local	superblock		

–  Reintroduce	fragmenta4on	issues	and	lose	simplicity	

23	

CSE	506:	Opera.ng	Systems	

How	to	find	the	locks?	
•  Again,	page	alignment	can	iden4fy	the	start	of	a	
superblock	

•  And	each	superblock	keeps	a	small	amount	of	
metadata,	including	the	heap	it	belongs	to	
–  Per-CPU	or	shared	Heap	
–  And	heap	includes	a	lock	

24	

CSE	506:	Opera.ng	Systems	

Locking	performance	
•  Acquiring	and	releasing	a	lock	generally	requires	an	
atomic	instruc4on	
–  Tens	to	a	few	hundred	cycles	vs.	a	few	cycles	

•  Wai4ng	for	a	lock	can	take	thousands	
–  Depends	on	how	good	the	lock	implementa4on	is	at	
managing	conten4on	(spinning)	

–  Blocking	locks	require	many	hundreds	of	cycles	to	context	
switch	

25	

CSE	506:	Opera.ng	Systems	

Performance	argument	
•  Common	case:	alloca4ons	and	frees	are	from	per-
CPU	heap	

•  Yes,	grabbing	a	lock	adds	overheads	
–  But	bever	than	the	fragmented	or	complex	alterna4ves	
–  And	locking	hurts	scalability	only	under	conten4on	

•  Uncommon	case:	all	CPUs	contend	to	access	one	
heap	
–  Had	to	all	come	from	that	heap	(only	frees	cross	heaps)	
–  Bizarre	workload,	probably	won’t	scale	anyway	

26	

CSE	506:	Opera.ng	Systems	

Cacheline	alignment	
•  Lines	are	the	basic	unit	at	which	memory	is	cached	
•  Cache	lines	are	bigger	than	words	
– Word:	32-bits	or	64-bits	
–  Cache	line	–	64—128	bytes	on	most	CPUs	

27	

CSE	506:	Opera.ng	Systems	

Undergrad	Architecture	Review	

CPU	0	

Cache	

ldw	0x1008	

CPU	loads	
one	word	
(4	bytes)	

Memory	Bus	

Cache	
Miss	

0x1000	

RAM	

Cache	operates	at		
line	granularity	(64	

bytes)	

28	

CSE	506:	Opera.ng	Systems	

Cache	Coherence	(1)	

CPU	0	

Cache	

Memory	Bus	

0x1000	

RAM	

CPU	1	

Cache	

ldw	0x1010	

Lines	shared	for	reading	have	a	shared	lock	 29	

CSE	506:	Opera.ng	Systems	

Cache	Coherence	(2)	

CPU	0	

Cache	

Memory	Bus	

0x1000	

RAM	

CPU	1	

Cache	

ldw	0x1010	

Lines	to	be	wriven	have	an	exclusive	lock	

stw	0x1000	 Copies	of	line	
evicted	

0x1000	

30	

CSE	506:	Opera.ng	Systems	

Simple	coherence	model	
•  When	a	memory	region	is	cached,	CPU	automa4cally	
acquires	a	reader-writer	lock	on	that	region	
– Mul4ple	CPUs	can	share	a	read	lock	
– Write	lock	is	exclusive	

•  Programmer	can’t	control	how	long	these	locks	are	
held	
–  Ex:	a	store	from	a	register	holds	the	write	lock	long	enough	
to	perform	the	write;	held	from	there	un4l	the	next	CPU	
wants	it	

31	

CSE	506:	Opera.ng	Systems	

Object	foo		
(CPU	0	writes)	

Object	bar	
(CPU	1	writes)	

False	sharing	

•  These	objects	have	nothing	to	do	with	each	other	
–  At	program	level,	private	to	separate	threads	

•  At	cache	level,	CPUs	are	figh4ng	for	a	write	lock	

Cache	line	

32	

CSE	506:	Opera.ng	Systems	

False	sharing	is	BAD	
•  Leads	to	pathological	performance	problems	
–  Super-linear	slowdown	in	some	cases	

•  Rule	of	thumb:	any	performance	trend	that	is	more	
than	linear	in	the	number	of	CPUs	is	probably	caused	
by	cache	behavior	

33	

CSE	506:	Opera.ng	Systems	

Strawman	
•  Round	everything	up	to	the	size	of	a	cache	line	
•  Thoughts?	
– Wastes	too	much	memory;	a	bit	extreme	

34	

CSE	506:	Opera.ng	Systems	

Hoard	strategy	(pragma4c)	
•  Rounding	up	to	powers	of	2	helps	
–  Once	your	objects	are	bigger	than	a	cache	line	

•  Locality	observa4on:	things	tend	to	be	used	on	the	
CPU	where	they	were	allocated	

•  For	small	objects,	always	return	free	to	the	original	
heap	
–  Remember	idea	about	extra	bookkeeping	to	avoid	
synchroniza4on:	some	allocators	do	this	
•  Save	locking,	but	introduce	false	sharing!	

35	

CSE	506:	Opera.ng	Systems	

Hoard	summary	
•  Really	nice	piece	of	work	
•  Establishes	nice	balance	among	concerns	
•  Good	performance	results	

36	

CSE	506:	Opera.ng	Systems	

Part	2:	Linux	kernel	allocators	
•  malloc()	and	friends,	but	in	the	kernel	

•  Focus	today	on	dynamic	alloca4on	of	small	objects	
–  Later	class	on	management	of	physical	pages	
–  And	alloca4on	of	page	ranges	to	allocators	

37	

CSE	506:	Opera.ng	Systems	

kmem_caches	
•  Linux	has	a	kmalloc	and	kfree,	but	caches	preferred	
for	common	object	types	

•  Like	Hoard,	a	given	cache	allocates	a	specific	type	of	
object	
–  Ex:	a	cache	for	file	descriptors,	a	cache	for	inodes,	etc.	

•  Unlike	Hoard,	objects	of	the	same	size	not	mixed	
–  Allocator	can	do	ini4aliza4on	automa4cally	
– May	also	need	to	constrain	where	memory	comes	from	

38	

CSE	506:	Opera.ng	Systems	

Caches	(2)	
•  Caches	can	also	keep	a	certain	“reserve”	capacity	
–  No	guarantees,	but	allows	performance	tuning	
–  Example:	I	know	I’ll	have	~100	list	nodes	frequently	
allocated	and	freed;	target	the	cache	capacity	at	120	
elements	to	avoid	expensive	page	alloca4on	

–  Oyen	called	a	memory	pool	

•  Universal	interface:	can	change	allocator	underneath	
•  Kernel	has	kmalloc	and	kfree	too	
–  Implemented	on	caches	of	various	powers	of	2	(familiar?)	

39	

CSE	506:	Opera.ng	Systems	

Superblocks	to	slabs	
•  The	default	cache	allocator	(at	least	as	of	early	2.6)	
was	the	slab	allocator	

•  Slab	is	a	chunk	of	con4guous	pages,	similar	to	a	
superblock	in	Hoard	

•  Similar	basic	ideas,	but	substan4ally	more	complex	
bookkeeping	
–  The	slab	allocator	came	first,	historically	

40	

CSE	506:	Opera.ng	Systems	

Complexity	backlash	
•  I’ll	spare	you	the	details,	but	slab	bookkeeping	is	
complicated	

•  2	groups	upset:		(guesses	who?)	
–  Users	of	very	small	systems	
–  Users	of	large	mul4-processor	systems	

41	

CSE	506:	Opera.ng	Systems	

Small	systems	
•  Think	4MB	of	RAM	on	a	small	device	(thermostat)	
•  As	system	memory	gets	4ny,	the	bookkeeping	
overheads	become	a	large	percent	of	total	system	
memory	

•  How	bad	is	fragmenta4on	really	going	to	be?	
–  Note:	not	sure	this	has	been	carefully	studied;	may	just	be	
intui4on	

42	

CSE	506:	Opera.ng	Systems	

SLOB	allocator	
•  Simple	List	Of	Blocks	
•  Just	keep	a	free	list	of	each	available	chunk	and	its	
size	

•  Grab	the	first	one	big	enough	to	work	
–  Split	block	if	leyover	bytes	

•  No	internal	fragmenta4on,	obviously	
•  External	fragmenta4on?		Yes.		Traded	for	low	
overheads	

43	

CSE	506:	Opera.ng	Systems	

Large	systems	
•  For	very	large	(thousands	of	CPU)	systems,	complex	
allocator	bookkeeping	gets	out	of	hand	

•  Example:	slabs	try	to	migrate	objects	from	one	CPU	
to	another	to	avoid	synchroniza4on	
–  Per-CPU	*	Per-CPU	bookkeeping	

44	

CSE	506:	Opera.ng	Systems	

SLUB	Allocator	
•  The	Unqueued	Slab	Allocator	
•  A	much	more	Hoard-like	design	
–  All	objects	of	same	size	from	same	slab	
–  Simple	free	list	per	slab	
–  No	cross-CPU	nonsense	

•  Now	the	default	Linux	cache	allocator	

45	

CSE	506:	Opera.ng	Systems	

Conclusion	
•  Different	alloca4on	strategies	have	different	trade-
offs	
–  No	one,	perfect	solu4on	

•  Allocators	try	to	op4mize	for	mul4ple	variables:	
–  Fragmenta4on,	low	false	conflicts,	speed,	mul4-processor	
scalability,	etc.	

•  Understand	tradeoffs:	Hoard	vs	Slab	vs.	SLOB	

46	

CSE	506:	Opera.ng	Systems	

Misc	notes	
•  When	is	a	superblock	considered	free	and	eligible	to	
be	move	to	the	global	bucket?	
–  See	figure	2,	free(),	line	9	
–  Essen4ally	a	configurable	“empty	frac4on”	

•  Is	a	"used	block"	count	stored	somewhere?		
–  Not	clear,	but	probably	

47	

