
Containing the Hype

Kavita Agarwal, Bhushan Jain, and Donald E. Porter
Stony Brook University

{kaagarwal, bpjain, porter}@cs.stonybrook.edu

Abstract
Containers, or OS-based virtualization, have seen a recent
resurgence in deployment. The term “container” is nearly
synonymous with “lightweight virtualization”, despite a re-
markable dearth of careful measurements supporting this no-
tion. This paper contributes comparative measurements and
analysis of both containers and hardware virtual machines
where the functionality of both technologies intersects. This
paper focuses on two important issues for cloud computing:
density (guests per physical host) and start-up latency (for
responding to load spikes). We conclude that the overall den-
sity is highly dependent on the most demanded resource. In
many dimensions there are no significant differences, and
in other dimensions VMs have significantly higher over-
heads. A particular contribution is the first detailed analysis
of the biggest difference—memory footprint—and opportu-
nities to significantly reduce this overhead.

1. Introduction
Operating System-level virtualization, also known as a con-
tainer, is an increasingly popular approach to isolating ap-
plications that use the same underlying OS kernel [7, 34, 37,
38]. Containers have recently gained popularity as the de-
fault back-end for Docker, an application packaging and dis-
tribution system used by companies including Google [26].

The purported reason to use containers over a hardware
virtual machine, such as VMware or Xen, is reduced over-
heads. Containers forego the ability to run different OSes—
an essential feature of VMs, but can be appropriate for sce-
narios where all guest applications are programmed to the
same OS API. Containers are implemented by copying a
subset of OS data structures, which one would expect to
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be lighter-weight than running another complete OS in-
stance. Similarly, data structure initialization can be faster
than booting a legacy OS kernel.

This difference in implementation techniques raises con-
cerns about security. Unlike VMs, containers expose the host
system call table to each guest, and rely on pointer hooks
to redirect system calls to isolated data structure instances,
called namespaces in Linux. One security concern for con-
tainers is that there may be exploitable vulnerabilities in the
pointer indirection code, leading to information leakage or
privilege escalation. System calls servicing one guest oper-
ate in the same kernel address space as the data structures for
other guests. For this reason containers also disallow func-
tionality such as loading kernel extensions. A second secu-
rity concern for containers is that any vulnerabilities in the
system call API of the host kernel are shared, unlike VMs.
Specifically, a kernel bug that is exploited through a system
call argument is a shared vulnerability with a co-resident
container, but not on a co-resident VM. As a point of refer-
ence, the national vulnerability database [31] lists 147 such
exploits out of 291 total Linux vulnerabilities for the pe-
riod 2011–2013. In short, containers inherit the same secu-
rity problems as monolithic operating systems written in un-
safe languages, which caused people to turn to hypervisors
for security isolation. In contrast, the interface exported by
a shared hypervisor is narrower, and less functionality exe-
cutes in an address space shared among guests.

Moreover, there is a remarkable lack of scientific stud-
ies on how much performance benefits containers actually
offer in exchange for these qualitative differences, and exist-
ing studies are either dated in a rapidly evolving field; nar-
rowly focused on particular application areas; or overlook
important optimizations, leading to exaggerated results. In
the interest of adding experimental data to the scientific dis-
course on this topic, this paper contributes a careful, updated
comparison of the two technologies.

Throughout the paper, we use Linux’s KVM [18] and
LXC [2] as representative examples of both technologies.
We selected KVM and LXC in part because they can use
the same kernel, eliminating possible experimental noise.
KVM has a comparable design to other type 2 (hosted) hy-
pervisors; further, KVM’s content-based deduplication has



a first-order effect on memory overhead and is comparable
to other VMs such as Xen, VMware, and VirtualBox. The
design of LXC is also similar to other container implemen-
tations: FreeBSD Jails are implemented by allocating a sep-
arate prison object for the Jailed process [24], and Solaris
Zones are implemented by configuring separate filesystem
and virtual network interfaces for each zone [23]. As a first
step towards empirically validating that LXC is represen-
tative of other container implementations, we compare the
memory footprint and start-up time of LXC containers with
FreeBSD Jails, which is within the same order of magnitude
as LXC. An exhaustive comparison of each VM and con-
tainer implementation is beyond the scope of this paper.

We organize this comparison around two important met-
rics for cloud efficiency: consolidation density, or guests per
physical machine, and the latency to start a new guest—
a metric relevant to quickly servicing spikes in demand. If
start-up latency is too high, providers will generally provi-
sion for peak demand instead of average demand in order to
minimize worst-case request latency.

Our comparison yields a more nuanced set of benefits and
some drawbacks to each option. For instance, simple check-
pointing optimizations yield start-up times for KVM that are
an order of magnitude lower than reported by previous stud-
ies [11]. Moreover, the start-up time of either is unacceptably
high to dynamically scale instances of latency-sensitive ap-
plications. Similarly, overall density of either technology is
highly dependent on the most contended resource, and, for
several resources, neither approach has a clear advantage.

Finally, this paper contributes an analysis of the worst
case for VMs relative to containers: memory consumption.
We identify several opportunities to improve both technolo-
gies. We expect that the limited functionality and security
concerns for containers are fundamental to the design, and
thus believe creating VMs with overheads equivalent to con-
tainers is a useful and interesting “challenge problem” for
future research. We expect this challenge may not be com-
pletely realizable, as there are likely fundamental memory
overheads for VMs relative to containers, but we also iden-
tify considerable bloat that could be reduced.

Container Configuration. A container can be configured
in two modes: one that runs all of the typical daemons of a
fully functional system (called “full”), and another that runs
a single application in a sandbox (called “single”). Because
the “full” configuration is comparable to one or more VM
running the same guest OS, this paper primarily measures
this comparison, although some data is also reported for
the “single” case, as the “single” configuration is also a
popular option. In general, we feel the “single” case is more
fairly compared to a library OS [21, 33, 39] or a sandboxing
system [13, 43].

Experimental Setup. We ran all experiments on a Dell Op-
tiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4 GB
RAM, and a 250 GB, 7200 RPM ATA disk. Our host sys-
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Figure 1. SPEC CPU 2006 execution time for simulating a
quantum computer as number of guests increases on a 4-core
machine. Lower is better.

tem runs Ubuntu 14.10 server with host Linux kernel version
3.16. Our host system includes KSM and KVM on QEMU
version 2.1.0 and LXC version 1.1.0. Each KVM Guest
is deployed with 1 virtual CPU with extended page tables
(EPT) confined to a single host CPU core, 1 GB RAM, a 20
GB virtual disk image, Virtio enabled for network and disk,
bridged connection with TAP, and runs the same Ubuntu and
Linux kernel image. Each LXC guest is configured with 1
CPU core confined to a specific host CPU core. For a fair
comparison, we limit cgroups memory usage of LXC guest
to 256 MB, which is equivalent to the resident size of a typ-
ical VM (248 MB).

2. Density of CPU and I/O Bound Workloads
In this section we measure the impact of increasing numbers
of guests on a shared physical host. We measure the change
in performance of one guest on a CPU-bound and I/O-bound
workload as the number of guests per core increases.

2.1 CPU-Bound Workloads
We measure the performance of two SpecCPU 2006 bench-
marks configured with the standard base metric configu-
ration that enforces strict guidelines for benchmark com-
pilation. One benchmark simulates a quantum computer
(462.libquantum) and one simulates a game of chess (438.-
sjeng). We run the benchmark on one guest, and all other
guests increment an integer in a while loop, simulating an
environment where all guests are running CPU-bound work-
loads. We run one iteration of the benchmark to warm-up
the system, and report mean and 95% confidence intervals
for subsequent runs. We compare both containers and VMs
with densities of 1, 2, 4, and 6 guests/core (i.e., 1, 4, 8, 16,
and 24 guests on a 4 core system).

Figures 1 and 2 show the execution time of the quan-
tum and chess benchmarks as guest density increases, where
lower is better. With only one guest on the system, perfor-
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Figure 2. SPEC CPU 2006 execution time for chess simu-
lation as number of guests increases on a 4-core machine.
Lower is better.

mance on both a VM and container are comparable to a na-
tive process. As density increases, both VMs and containers
degrade dramatically and equally. In general, the differences
in execution time are very small—8.6% in the worst case—
and often negligible. In summary, for CPU-bound workloads
at reasonable densities, VMs and containers appear to be
equally good.

2.2 I/O-Bound Workloads
We use Filebench [12] to measure the performance of a typ-
ical fileserver workload running in one guest. The fileserver
workload measures performance of various file operations
like stat, open, read, and write in terms of operations per sec-
ond (ops/sec). We plot the mean ops/sec and 95% confidence
intervals of containers and VMs in case of 1, 2, 4, 6, and
8 guests/core. The other guests are running the same busy
workload of incrementing an integer. Here, we measure the
effect of CPU-bound workload running on other guests, over
the I/O performance measured by Filebench. Figure 3 shows
that the deterioration in performance is proportionate for the
KVM and LXC. However, KVM performance is lower than
LXC by a near-constant factor. We believe this difference is
attributable to the cost of VM exits incurred every few I/Os
when using virtio, paravirtualized device drivers, or doubled
host and guest filesystem overheads.

We also evaluated the effect of running an I/O-bound
background workload on other VMs. Unfortunately, the sys-
tem could not finish the benchmark with more than 2 VM
guests/core. We suspect this is a bug in virtio’s memory man-
agement, not a performance cliff, as the system appeared to
be thrashing on memory. We are still investigating this issue
as ongoing work. The workload did complete on containers.
For up to two guests per core, the performance trend for con-
tainers and VMs with concurrent I/O was comparable to the
trend with CPU-bound background work.
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Figure 3. Filebench I/O performance as number of guests
increases on a 4-core machine. Higher is better.

We hasten to note that I/O pass-through, where a device
is directly mapped into a VM, can eliminate VM exits and
yield I/O performance comparable to bare metal [3, 4, 14,
20, 40]. Moreover, recent papers indicate that the best per-
formance is likely achieved when I/O drivers are pushed into
the application [6, 32], which would ultimately obviate any
difference between containers or VMs with respect to I/O.

Thus, our results, as well as the results of other re-
searchers, indicate that performance of I/O-bound work-
loads is determined primarily by how devices are multi-
plexed among applications and guests. Direct-to-application
I/O will likely yield the highest performance, and we expect
that both containers and VMs can implement this model.

3. Memory Overheads
The biggest difference in overheads between containers and
VMs is their memory cost. We use the term memory foot-
print to refer to the incremental memory cost of adding an-
other guest to a system. This study focuses on the user- or
guest-level memory utilization, which dominates the mem-
ory cost. We leave a precise accounting of host kernel data
structures dedicated to a VM or container for future work.
We note that, for KVM, most supporting data structures (ex-
cept the nested page tables) are in a second, user-level qemu
process, which is included in this analysis.

To measure container memory footprint, we sum the pro-
portional set size (PSS) of each process in the container. PSS
accounts a portion of each shared page to each process, al-
lowing correct sums across processes. For instance, if 10
processes in a container share 10 pages, each process’s PSS
is incremented by 1 page.

Figure 4 presents measurements comparing the incre-
mental memory cost of starting a new VM, compared to the
incremental cost of starting a container. We created VMs
with 1 vcpu, 1 GB memory running Linux kernel 3.16 on
a 3.16 host Linux system and containers with shared, copy-
on-write chroot directory. This graph measures the cost of
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Figure 4. Average memory footprint (proportional set size)
of VMs with KSM enabled versus full Containers and ap-
plication containers, as the number of instances increases.
Lower is better.

an idle VM waiting for a login, in order to get a sense of
the baseline costs of each approach. After starting each new
guest, we wait for the KSM numbers and memory consump-
tion to stabilize before recording the memory footprint. We
spot-checked the confidence intervals for memory footprint
of 4, 8, 16, 32 guests and the variance is negligible.

When emulating a full Linux system, the footprint of a
container is 16 MB. In contrast, the memory footprint of a
VM is 194 MB—12× larger than a container in the same
scenario. These measurements imply that 12 times more
containers, than VMs can be supported on a given host with
a fixed amount of memory.

However, a well-known technique for over-committing
memory is hash-based deduplication [41], or Kernel Same
Page Merging (KSM) on Linux. This technique hashes guest
pages to identify duplicate contents, and then remaps the
pages copy-on-write to a single copy. This is particularly
effective when multiple instances of the same exact guest
OS are running—i.e., normalizing to the constraint imposed
by containers. Figure 4 reflects using the KSM feature for
the host and configuring qemu-kvm to use the KSM feature.

With memory deduplication, roughly 96 MB of each VM
image could be reused as additional VMs were added. In
the asymptote, a VM’s memory footprint is roughly 91 MB.
With as few as 8 VMs, the average memory footprint drops
below 100 MB. We note that, from the host’s perspective,
any KVM guest RAM—including the guest’s page cache—
is treated as anonymous memory, allowing deduplication
between cached pages of disk images. Linux containers do
not use KSM to deduplicate memory.

Linux containers primarily share libraries and other files
among processes through the host page cache; the incremen-
tal cost for a container is roughly 8 MB in the limit. The av-
erage memory footprint per container drops below 10 MB
with as few as 8 full containers. Simple memory deduplica-

tion helps both containers and VMs, but disproportionately
improves the memory overhead of VM from 12× to 11×.

To determine whether KSM would afford additional ben-
efits to containers beyond file-level sharing, we manually
analyzed the anonymous pages between two container in-
stances to find duplicates. We found only 1 duplicate anony-
mous page was among the processes of two containers, indi-
cating KSM would afford little benefit to containers.

Comparison to Jails. As a point of comparison, we also
measured the memory footprint of a FreeBSD jail, at 22 MB
using RSS, as FreeBSD does not report a PSS. Although 22
MB is higher than the 16 MB measured for LXC, we expect
this difference would be smaller if the PSS were measured
in both cases. Either way, these numbers are comparable
to a first order, adding evidence that our data is roughly
representative of other container implementations.

Shared vs. Copied chroot. The experiments above are de-
signed to show containers in their best light: with a shared,
copy-on-write chroot directory. By sharing files, the memory
footprint of the container drops by roughly half. In contrast,
if one set up a copy of the chroot environment with identical
contents, neither KSM nor the host page cache will dedu-
plicate these contents. When we measured the asymptotic
memory overheads in this case, containers were around 14
MB (vs 8 MB above). The only file sharing is in the LXC
host process, which operates outside of the chroot directory.
Without deduplication support for in-memory file contents,
this common deployment scenario for containers will see
higher overheads.

Single-Application Container. Figure 4 also shows the
memory footprint of a single application, /bin/bash run-
ning in a sandbox. The memory footprint of a single-
application container is 2 MB, compared to 16 MB for a
full system container. Once file sharing is factored in among
multiple identical application containers, the footprint drops
to 1.3 MB in the limit. Although this is an unfair comparison
in some respects, the single-application case is where con-
tainers are most useful, reducing memory footprint by up to
60× compared to dedicating a VM to a single application.

Deduplicating Different Guest Kernel Versions The ex-
periment in Figure 4 shows the best case for KSM—the ex-
act same kernel version in all VMs and the host. This envi-
ronment is equivalent to a container, as all containers share
the same host kernel. Note that, even in the single-VM case,
KSM can deduplicate memory with the host kernel, yielding
a savings of 35 MB over KSM disabled.

Here we measure the impact on deduplication when dif-
ferent versions of Linux are loaded in the guest than is in
the host. In practice, even initially identical guests can di-
verge over time, such as when one VM installs a security up-
grade and one does not. We expect similar trends would hold
among sets of guests. With a 3.16 host kernel, a VM running
3.17 kernel will deduplicate only 33 MB. If the VMs load a



Anon/Anon File/File Anon/File Total
Within the
VM process

28 MB 0.5 MB 0.5MB 29 MB

Between VM
and Host

18 MB 2 MB 12 MB 32 MB

Between 2 VM
processes

48 MB 8 MB 3 MB 59 MB

Total 94 MB 10.5 MB 15.5 MB 120 MB

Table 1. VM Memory footprint deduplication opportuni-
ties. All guest RAM is considered anonymous memory.
KSM can deduplicate column 1, but not columns 2 and 3.
Column 2 identifies duplicates between qemu-internal file
use and the rest of the host. Column 3 identifies dupli-
cate content between either guest RAM or qemu anonymous
memory, and files in the host.

3.15 kernel, KSM only deduplicates 26 MB. However, KSM
still finds 23 MB to deduplicate between kernel versions 3.2
and 3.16—a gap of 2.5 years.

Although it is unsurprising that deduplication opportuni-
ties are inversely proportional to the differences in the kernel
version, it is encouraging that a significant savings remains
even among fairly different versions of the Linux kernel.

Discussion. This section demonstrates that content-based
memory deduplication can significantly reduce the incre-
mental cost of VMs relative to containers, and that the most
fair comparison is in the asymptote, not the single-guest
case. Even when the kernels are fairly different versions of
Linux, the deduplication opportunities are significant. That
said, containers still offer a memory footprint roughly 11 −
60× lower than VMs, even with deduplication. As the next
Section shows, other techniques can further narrow, but not
close, this gap. Finally, the memory-saving benefits of con-
tainers are only realized when the system administrator is
careful to share the same files copy-on-write, such as with a
unioning file system [5]. These overheads could be mitigated
if the kernel employed content-based deduplication for files
cached in memory.

4. Memory Reduction Opportunities
This section proposes a challenge problem: Is it feasible to
reduce the incremental memory cost of a VM to match a
container? This section analyzes the memory usage of a VM
and identifies opportunities to further reduce memory con-
sumption without disrupting performance or functionality.

Figure 4 shows an asymptotic VM footprint around 91
MB. Among these 91 MB of unique pages, 23 MB belong
to the userspace qemu emulator process, 2 MB are used for
EPT tables, and 66 MB are used as RAM by the guest. The
23 MB belonging to qemu are used for device emulation,
qemu’s internal heap, and stack. Among the 66 MB used as
guest RAM, 11 MB are allocated by the guest as anonymous
memory (i.e., process heaps and stacks) and 55 MB pages
are caching files in the guest.

The preliminary analysis below identifies two opportuni-
ties to further lower the asymptotic memory cost of a VM by
31.3 MB, to roughly 60 MB, or only 4− 30× higher than a
container. Work is ongoing to identify additional opportuni-
ties and answer the larger challenge question.

4.1 Deduplication Opportunities
This subsection measures an upper bound on the reduction of
VM memory via deduplication. For this analysis, we disable
hugepages and KSM in the host as well as guest and qui-
esce the guests before analyzing memory pages. We hashed
the contents of each physical page on the system and com-
pared these hashes to the physical page frames assigned to
one guest. We calculate deduplication opportunities within a
guest, between the host and a guest, and between two guests.
The breakdown by category of this analysis is shown in Ta-
ble 1, and explained below.

We found 120 MB of the VM’s 235 MB total pages are
duplicates, either with the host or another guest. Therefore,
a perfect KSM could deduplicate 120 MB. Each row in Ta-
ble 1 shows how many duplicate pages can be eliminated by
each possible comparison: 29 MB duplicate pages within the
VM process itself, 32 MB duplicate pages between the VM
process and the host, and 59 MB duplicate pages between 2
VM processes. All three categories are significant opportu-
nities, although inter-guest deduplication is most promising.

KSM is designed to deduplicate only anonymous pages—
Column 1 of Table 1. At best, KSM can deduplicate 94
MB out of the 120 MB opportunity, reducing the asymp-
totic incremental cost to 91 MB, and missing another 26
MB. The second column indicates opportunities where files
used by the qemu process have contents duplicate to contents
of other files on the system and are in distinct page frames
and files. The third column indicates opportunities where the
contents of guest memory or qemu anonymous memory are
duplicated with a cached file on the host, such as the same
version of libc in two places. The deduplication opportuni-
ties are shown in detail in Table 1.

In summary, 26 MB of additional duplicate pages could
be removed from the current 91 MB incremental VM cost if
KSM were extended to files in the host page cache.

Many researchers [16, 28, 29, 36] have explored the ef-
fectiveness of different strategies to find memory duplicates.
Sharma and Kulkarni [36] reduce the time for KSM to find
duplicate pages by switching the KSM index from an RB-
tree to a hash table. They also reduce memory footprint by
evicting potentially double-cached disk image data from the
host page cache. Miller et al. [29] deduplicate virtual disk
I/O across VMs. Neither of these strategies, nor KSM, con-
siders the case of two different files with the same contents,
in active use by both a guest and host.

4.2 Extra Devices
Another significant source of VM memory overhead is em-
ulating unnecessary devices in qemu. One common scenario



Device Savings (in MB)
Video and Graphics 13.5
Audio 5.3
2 USB controllers 5.2

Table 2. VM Memory footprint savings when disabling un-
used devices.

is running a VM in a cloud that needs to only interact with
a user over the network. In such a scenario, we can safely
remove the audio, video, and extra USB devices from a de-
fault KVM instance (as configured by the common virsh

tool) without loss of important functionality. Table 2 shows
the effective savings in VM memory footprint when we dis-
able various peripheral emulations. We note that these com-
binations are not strictly additive—removing video graphics
and USB saves 15.3 MB, but removing all three saves only
13.6 MB. Work is ongoing to understand these diminishing
returns. We see 5.3 MB reduction in the 91 MB incremental
cost by not emulating unnecessary devices in addition to the
memory deduplication opportunities.

5. Start-Up Latency
Another benefit of containers is the reduced start-up time
compared to a VM. Lower start-up latency is of particular
value to a cloud provider, as a sufficiently low startup latency
allows the provider to provision for average load, rather
than peak load, without missing a response deadline, such
as those specified in a service level objective (SLO).

Intuitively, containers should have a lower start-up la-
tency than a guest OS, as only API-relevant data structures
need to be initialized, eliding time-consuming boot tasks
such as device initialization. We measure this difference in
Table 3. A typical VM takes 2 orders of magnitude longer to
start up than a container.

Running a single-application container cuts the start-up
time of LXC in half, but indicates a considerable startup
cost that is independent of the number of processes. We also
measure the start-up time of a typical FreeBSD Jail, which
starts fewer processes than a full Linux instance and thus
takes roughly half the time to start.

However, there is at least one other alternative when one
is running the same kernel on the same hardware: checkpoint
a booted VM and simply restore the checkpoint after boot. In
the case of a VM, this elides the majority of these overheads,
reducing start-up time by an order of magnitude. In contrast,
for a container, the savings of checkpoint/restore are more
marginal (0.008s for a full container and 0.027s for the
application sandbox).

Even with the checkpoint/restore optimization, there is
still a factor of 6× difference in the start-up latency between
the VM and a full container. However, there are likely op-
portunities to further close this gap, and we expect that opti-
mizations to restore time will disproportionately help VMs.

Technique time(sec)
KVM Start-Up 10.342
LXC Start-Up 0.200
LXC-bash Start-Up 0.099
FreeBSD Jail Start-Up 0.090
KVM Restore 1.192
LXC Restore 0.192
LXC-bash Restore 0.072

Table 3. Start-Up times for a VM and a container

For instance, the SnowFlock [19] VM Fork system reduces
the start-up time of forked Xen VM by 3− 4× by only allo-
cating and copying forked guest memory on demand. Bila et
al. [8] show that the mean working set of a 4 GB VM is just
165 MB and as a result, SnowFlock can reduce the start-up
by just duplicating the working set size of a running VM.

Although difficult to precisely analyze from outside a
data center and on different hardware, we observe that
adding a 100-200ms delay to a request is unlikely to be sat-
isfactory simply given the orders of magnitude for request
processing in recent data center performance analysis stud-
ies [17, 25]. For instance, in the BigHouse workload model,
this would increase service times anywhere from a factor of
2×, up to 2 orders of magnitude. It is unlikely that any tech-
nology with start-up times measured in hundreds of millisec-
onds will ever facilitate demand loading of latency-sensitive
services. We suspect that more radical changes to the OS,
such as a library OS or more aggressive paravirtualization,
will be required to realistically meet these requirements. As
a point of comparison, the Graphene library OS paper re-
ported that a Linux process can start in 208 microseconds
and Graphene itself can start in 641 microseconds [39].

Thus, when checkpoint/restore time for VMs is consid-
ered, containers do a have a clear advantage in start-up time,
but the gap is smaller than one might expect. In both cases,
the costs may be too high for anything other than provision-
ing for the peak demand.

6. Related Work
A few previous studies have evaluated the benefits of con-
tainers relative to VMs in specific contexts; this paper
bridges gaps in previous evaluations of both approaches,
and provides a useful, independent data for comparison.

Concurrent with this work, Canonical conducted some
similar experiments comparing LXD and KVM running a
complete Ubuntu 14.04 guest (a slightly older version than
this paper) [10]. Their density measurements show con-
tainer density 14.5× higher than KVM, limited by memory,
whereas our measurements show the cost relative to LXC
at 11×. It is unclear which differences in the experiments
account for the overall differences in density. The start-up
times reported for both LXD and KVM are considerably
higher than our measurements, and these measurements do



not include the checkpointing optimization. The article re-
ports a 57% reduction in network message latency for LXD,
which we did not measure.

Felter et al. [11] measure CPU, memory throughput, stor-
age and networking performance of Docker and KVM. This
study concludes that containers result in equal or better per-
formance than VMs in almost all cases. While our results
corroborate the findings of this study with different bench-
marks, this study does not measure memory footprint or
scalability of either system. This study reports KVM’s start-
up time to be 50× slower than Docker—commensurate with
our unoptimized measurements; our measurements show
that checkpoint and restore optimization to start a VM which
brings KVM start-up time from 50× to 6×. Another study
measures the memory footprint of Docker and KVM us-
ing OpenStack [1], finding that KVM has 6× larger mem-
ory footprint when running real application workloads. Our
work contributes opportunities to reduce this 6×.

Regola and Ducom [35] have done a similar study of the
applicability of containers for HPC environments, such as
OpenMP and MPI. They conclude that I/O performance of
VMs is the limiting factor for adoption of virtualization tech-
nology and that only containers can offer near native CPU
and I/O performance. This result predates significant work to
reduce virtual I/O overheads [3, 4, 14, 20]. Xavier et al. [42]
compare the performance isolation of Xen to container im-
plementations including Linux VServer, OpenVZ and Linux
Containers (LXC). This study concluded that, except for
CPU isolation, Xen’s performance isolation is considerably
better than any of the container implementations. Another
older performance isolation study [22] reaches similar con-
clusions when comparing VMware, Xen, Solaris containers
and OpenVZ. We note that these results may be dated, as the
studies used Linux versions 2.6.18 (2006) or 2.6.32 (2009).

Soltesz et al. [37] measure relative scalability of Linux-
VServer, another container technology, and Xen. They show
that the Linux-Vserver performs 2× better than VMs for
server-type workloads and scale further while preserving
performance. However, this study only measures aggregate
throughput, and not the impact on a single guest—a common
scenario in a multi-tenant environment.

A few research papers reduce the memory footprint of a
VM or enhance RAM deduplication techniques to find more
duplicates in less time [16, 30, 41]. Bugnion et al. [9] in-
troduced transparent page sharing, where duplicate copies
of a page are replaced by a reference to the copy-on-write
mapped original page. Waldspurger [41] first implemented
the inter-VM content based page sharing in VMware ESX
server. ESX scans the VM’s physical memory to find and
deduplicate pages with duplicate content. Gupta et al. [16]
extended the idea for Xen with a combination of whole page
sharing, page patching and compression techniques. Murray
et al. [30] also deduplicates pages in guests with sharing-
aware virtual block devices in Xen. These devices detect

sharing opportunities in the page cache immediately as data
is read into memory. Miller [27] explains the reasons for
memory duplication as popular pages like zero page, direct
copies created by memcpy, bcopy, and memmove or de-
terministic results of the same program run multiple times
simultaneously. He also analyses the spatial and temporal
qualities of duplicate pages and sharing potential of 2 pro-
cesses or VMs running the same workload. Groninger [15]
also categorizes the duplicate pages of VMs based on mem-
ory access patterns and semantic information. This paper
continues this line of work, investigating the fundamental
opportunity for deduplication and exploring other avenues
to further reduce the memory footprint.

7. Conclusion
VMs and containers provide some overlapping functionality—
the ability to emulate a complete OS. However, these tech-
nologies were designed to address different goals and have
significant qualitative differences: whether kernels can be
different or the same; whether kernel modules can be loaded;
whether a single application can run in isolation; the general
ease of creation and use; and different security risks stem-
ming from different attack surfaces and shared trusted com-
puting base. This paper analyzes the density and start-up la-
tency arguments for containers when both approaches over-
lap: running multiple instances of the same, complete OS.
These results are preliminary: the community would benefit
from further measurements of more applications, VM and
container implementations, and other use cases.

Both VMs and containers incur overheads and scalability
bottlenecks. Depending on the critical resource, these bot-
tlenecks may yield different overall consolidation densities.
Our current measurements indicate that CPU-bound work-
loads are comparable either way, and I/O bound workloads
are primarily sensitive to the multiplexing mechanism. Al-
though the memory footprint and start-up times of contain-
ers tend to be lower, it is easy to craft an experiment that
exaggerates the differences. With reasonable optimizations
applied, start-up time of a full container is 6× lower than a
VM, and memory footprint is 11× lower than a VM. On the
other hand, the start-up time of an application container is
16× lower than a VM, and memory footprint is 60× lower
than a VM. Our analysis identifies two simple opportunities
to further reduce incremental VM memory usage by a third,
we expect to discover others in future work.
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[37] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Pe-
terson. Container-based Operating System Virtualization: A
Scalable, High-performance Alternative to Hypervisors. In
Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, pages
275–287, New York, NY, USA, 2007. ACM.

[38] M. Stokely and C. Lee. The FreeBSD Handbook, 3rd Edition,
Vol 1: Users’s Guide, 2003.

[39] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John,
H. A. Kalodner, V. Kulkarni, D. Oliveira, and D. E. Porter.
Cooperation and Security Isolation of Library OSes for Multi-
Process Applications. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), pages 9:1–9:14,
2014.

[40] C.-C. Tu, M. Ferdman, C.-t. Lee, and T.-c. Chiueh. A Com-
prehensive Implementation and Evaluation of Direct Interrupt
Delivery. In 11th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environment (VEE), VEE ’15.
ACM, 2015.

[41] C. A. Waldspurger. Memory resource management in
vmware esx server. ACM SIGOPS Operating Systems Review,
36(SI):181–194, 2002.

[42] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto,
T. Lange, and C. A. F. De Rose. Performance Evaluation of
Container-Based Virtualization for High Performance Com-
puting Environments. In Proceedings of the 2013 21st Eu-
romicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP ’13, pages 233–240,
Washington, DC, USA, 2013. IEEE Computer Society.

[43] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sand-
box for portable, untrusted x86 native code. In Proceedings
of the IEEE Symposium on Security and Privacy (Oakland),
2009.


