
Building a Security OS With Software Defined Infrastructure

Guofei Gu
Texas A&M University
guofei@cse.tamu.edu

Hongxin Hu
Clemson University

hongxih@clemson.edu

Eric Keller
University of Colorado at Boulder

eric.keller@colorado.edu

Zhiqiang Lin
University of Texas at Dallas

zhiqiang.lin@utdallas.edu

Donald E. Porter
The University of North Carolina at

Chapel Hill
porter@cs.unc.edu

ABSTRACT
The recent emergence of Software-Defined Infrastructure (SDI) of-
fers a number of useful tools for managing, monitoring, containing,
shepherding, and recovering computing units within an enterprise,
cloud, or data center. As SDI utilities grow and the types of resources
that can be abstracted into software-managed control and data planes
increase, there is a pressing need for datacenter-level operating sys-
tems (OSes). Such a datacenter-level OS can further abstract and
easily capture higher-level policy goals, and push them down to
different types of hardware and software, ranging from application
processes to storage and networking. This paper thus proposes
S2OS, an SDI-defined Security OS, which offers an easy-to-use,
programmable security model for monitoring and dynamically se-
curing applications. We anticipate S2OS could unlock a wide range
of unprecedented security opportunities, including fine-grained and
dynamic security programmability at infrastructure scale, and infor-
mation flow tracking across an entire infrastructure.

KEYWORDS
Software-defined infrastructure, security operating system

ACM Reference format:
Guofei Gu, Hongxin Hu, Eric Keller, Zhiqiang Lin, and Donald E. Porter.2017.
Building a Security OS With Software Defined Infrastructure. In Proceedings
of APSys ’17, Mumbai, India, September 2, 2017, 8 pages.
DOI: 10.1145/3124680.3124720

1 INTRODUCTION
In recent years, there has been a rapid and dramatic paradigm shift in
computing from static control systems, often implemented in hard-
ware, to dynamic, easily-reconfigurable software-defined systems.
Examples of this shift include multi-tenant clouds, Software-Defined
Networking (SDN) [30], Network Function Virtualization (NFV) [2],
and Software-Defined Radios (SDR) [47]. A key enabling technol-
ogy for this shift is virtualization at many layers, including both

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
APSys ’17, Mumbai, India
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5197-3/17/09. . . $15.00
DOI: 10.1145/3124680.3124720

the OS and networking. For instance, hardware-centric infrastruc-
ture requires installing and managing the physical computers and
devices, where each installed computing device cannot be moved
around or easily modified. With Software-Defined Infrastructure
(SDI) [26], we now have a software-defined control layer (often
called the virtualization layer) for managing, monitoring, containing,
shepherding, and recovering all computing units in software. As a
result of this more flexible computing infrastructure, modern data
centers and clouds can make more effective use of the available
computing power, storage space, and network bandwidth.

Given the success of SDI in automating and simplifying dynamic
management of computing hardware, we believe the next frontier is
considering how SDI can change the practice of security adminis-
tration. Historically, many of critical systems have been developed
with security as a reactive add-on, rather than a fundamental design
goal. Consequently, the security mechanisms are often fragmented,
hard to configure, and hard to verify, which makes it difficult to
defend against various cyber attacks.

The current generation of hardware-centric, single-system designs
have a number of fundamental security challenges. First, existing
security mechanisms are often tightly coupled with legacy systems,
making these security mechanisms hard to protect from the rest
of the system. As such, often times, they share the same set of
privileges, and a security breach of the user applications or the
operating system can lead to the breach of the security mechanisms.
Second, current defenses often focus narrowly on one attack vector,
such as a network intrusion or input validation in the kernel; when
behavior is not clearly malicious, it is difficult, if not impossible,
to share information and coordinate across these multiple layers of
defense. Finally, a number of practical considerations lead toward
homogeneity, which is also often a root cause of automated cyber
attacks—once an exploit works for one system, it is likely to work
with others. Diversity would mitigate this problem, but only if
administration challenges could be addressed.

This paper argues that SDI provides an opportunity to address
these issues, rethinking security policies and abstractions at enter-
prise scale, unconstrained by the limitations of underlying hardware
or legacy system software. In addition to the management capa-
bilities of SDI, we also now have most, if not all, of the tools to
implement and replicate any application-facing abstractions in soft-
ware (and often in hardware too).

The Vision of S2OS. In this paper, we propose S2OS, an SDI-
defined Security OS, which aims to abstract security capabilities and
primitives at various layers, thus providing unified programmability

APSys ’17, September 2, 2017, Mumbai, India Gu, Guofei et al.

and controllability so that any security policy or procedure can be
easily and dynamically programmed at infrastructure scale. S2OS is
designed with the following security capabilities in mind:
• Strong Isolation. With virtualization of both the OS itself and

networking, security mechanisms can be deployed at a new, uni-
versal control layer. Within the host, since the guest OS runs
on a separate level above the hypervisor, there is a world switch
whenever control passes between the two. The hypervisor thus
provides strong isolation between the security mechanism and the
attacks present in the guest OS. Similarly, the network control
plane is separated from the data plane.

• Full Automation. When an intrusion is detected, current practice
is often to have a human administrator in the loop, or may rely
on mechanisms in the system that are vulnerable to subsequent
attacks. By moving security mechanisms into the virtualization
layer, we can program automated counter-measures in advance,
which execute at a plane below the attacked, external-facing soft-
ware. More importantly, we can automate and coordinate both
host-level and network-level security mechanisms to maximize
the coverage and accuracy of defense.

• Complete Visibility. The S2OS control plane is designed to give
full visibility into the entire infrastructure, including the memory,
networking, and file system state of each running application in
the system.

• High Flexibility. In S2OS, virtual hardware in hosts or networks
can be quickly altered, reconfigured, replicated, and rolled back
for any security purposes. At the application layer of S2OS, infras-
tructure managers can easily and flexibly program fine-grained,
dynamic security control policies.

• Trustworthiness. There is a lack of mutual attestation in existing
platforms. S2OS exports trust measurement as a first-class system
primitive between software and the underlying hosting platforms,
and provide mutual attestation between a virtual platform and
application software.

• Maneuvering and Diversity. With a layer below the OS and a
control over various networking and software stacks, we can now
maneuver a computing unit across the entire infrastructure using a
moving target defense. We can also offer diversified environments
from the lower layer to the networking, OS, and applications.

Similar to how traditional operating systems manage various hard-
ware resources for user applications, S2OS abstracts the control
layer of SDI and provides APIs for programmable security across an
entire infrastructure. More specifically, S2OS will be the first unified
framework to provide security control over various enterprise, cloud,
data-center computing and network units, including fine-grained
application process executions (e.g., through control agents at hyper-
visor, container, or library OS), and application-aware network flows
(e.g., through control agents at extended Open vSwitch software).

The “killer application” for S2OS is to unlock a range of unprece-
dented security use cases, including fine-grained dynamic security
programmability of entire infrastructures, information flow tracking
across an entire infrastructure, and easily translating simple, global
security goals onto local OS and network policy decisions. Lever-
aging infrastructure-wide security control abstractions provided by
S2OS, new security applications can be easily composed to provide

Containers

Application

Layer

Control

Layer

Infrastructure

Layer
Device Drivers (Control Agents)

Isolation
Trust

Management

Risk

Management
Monitoring

Information

Flow Tracking

Checkpoint

/Restore

Auditing /

Logging
Migration

Fine-grained

access control

App

Hardening

Moving Target

Defense
Deception

Northbound API

Southbound API

Figure 1: S2OS overview.

automatic, dynamic, host-networking coordinated, and intelligent
defense.

2 OVERVIEW
The goal of S2OS is to extend SDI into a comprehensive security
architecture. Given the complexity of providing the programmable
security across the entire SDI, S2OS follows a layered design ap-
proach [12]. As shown in Figure 1, S2OS contains three layers from
bottom to top: infrastructure layer, controller layer, and application
layer. Each layer implements abstractions and interfaces for the next
layer up, and uses the interfaces of the layer below to perform its
own functions.

The infrastructure layer is similar to hardware resources and
drivers in a traditional OS. The S2OS infrastructure layer consists
of control agents in various computing and networking units in
the infrastructure. We integrate control agents into hypervisors
and container engines to provide control over virtual machines and
containers or library OSes, respectively. More specifically, We
extend the OpenFlow Extension Framework (OFX) [43] to enable
OpenFlow network devices with custom functions. We also extend
Open vSwitch (OVS) to design the control agents for regular hosts
and mobile devices with application and context awareness.

The controller layer is a core layer in S2OS that enables pro-
gramming the underlying infrastructure for security applications
and services. The controller layer abstracts the entire infrastructure
into a logical entity. The controller layer also provides a set of se-
curity capability abstractions, such as isolation, trust management,
risk management, information flow tracking, monitoring, check-
point/restore/migration, and auditing/logging, which make it possi-
ble to implement more generic security services, and all forms of
security policy management to meet security objectives. For exam-
ple, S2OS makes it easy to define and enforce consistent security
policies across both hosts and networks on the entire infrastructure.

S2OS further abstracts security capabilities as microservices [14],
which are sharable, reusable, customizable and scalable, and can
be automatically provisioned and dynamically migrated based on
real-time security requirements. Based on composable security

Building a Security OS With Software Defined Infrastructure APSys ’17, September 2, 2017, Mumbai, India

microservices, security applications are implemented as software
instance that can be quickly instantiated and elastically scaled to
deal with attack traffic variations toward flexible and on-demand
placement of security functions.

In the application layer, S2OS provides a scripting language to
facilitate developing new security applications. Similar to a Unix-
style pipeline, application layer scripts implement global policies
using specific capabilities provided by the controller layer. Using a
FRESCO-like [41] script interface to compose underlying modules,
we envision that a variety of novel infrastructure-wide programmable
security applications/services, such as fine-grained access control,
app hardening, deception, and moving target defense, can be created
on top of S2OS.

In summary, S2OS makes it possible to program security in the
entire infrastructure through intelligent orchestration and dynamic
provisioning of security services. S2OS provides APIs to promote
programming security applications and services with composable mi-
croservices, on-demand resource allocation, and self-service provi-
sioning Thus, security applications and services can operate on an ab-
straction of the entire infrastructure, leveraging security services and
capabilities without being tied to specific system implementations.

3 S2OS DESIGN
This section describes each layer of the S2OS design, and how
these layers abstract different levels of policy concerns, ultimately
building programming abstractions for datacenter-scale policies.

3.1 Infrastructure Layer
The infrastructure layer serves to virtualize low-level data center
components: namely the host and networking. The goal of the in-
frastructure layer is to create common abstractions of heterogeneous
infrastructure, to then be used as building blocks for larger-scale,
control-layer functionality.

3.1.1 Host Building Blocks. One core element in SDI is an ap-
plication (or app for brevity), which can be one or more processes,
generally executing a single logical task. We model the infrastruc-
ture using a data flow graph, where each app is a node, and OS
abstractions (e.g., files, IPC, network sockets) form connections, as
well as sources and sinks. For example, a file on a file system can
be a source for data, it flows through a file handle into an app, and
an external network connection forms a sink. Because most OS
abstractions can be bi-directional, we refer to terminal nodes in the
graph as endpoints.

We model an SDI instance a group of applications. The simplest
use of a group is to create a virtual instance of an operating system,
with the abstraction of shared storage and a shared virtual LAN. We
do not attempt complete transparency when resources or applications
are placed on different physical machines, as many distributed OSes
have in the past. Rather, each app could have a private OS instance
with a private IP address. Applications can explicitly request to share
an OS instance if they need shared OS abstractions beyond a shared
file system, such as IPC. We note, and explain below, that all of these
abstractions may be virtualized—an OS instance may be running in
a virtual machine, a container, or a collection of cooperating library
OSes; storage may be virtualized across servers; and the network is
also software-defined and possibly multiplexed.

For more complex security goals and deployment models, we also
allow nested application groups. Nested groups are a building block
for drawing an explicit security perimeter around applications with
different degrees of trust. As a simple example, one may wish to try
out a new application inside of a sandbox. The new application can
be placed inside of a nested group, and any input or output from the
group will be checked by a perimeter reference monitor, which is
responsible for mediating information flows across group boundaries,
as well as sanitizing, declassifying, logging, or monitoring inputs
and outputs. In other words, the perimeter reference monitor is a key
“pinch point” for security policy enforcement. In the sandboxing
example, one can gradually adjust the degree of suspicion and access
mitigation inside the sandboxed group, as well as migrate other
resources into the group.

Providing Process Virtualization. The first building block for
S2OS on a local OS or hypervisor is basic process virtualization
support. One goal is to remain independent of a particular technol-
ogy, but, rather, to adopt a generic approach that can plug a number
of technologies, including virtual machines, containers, and library
OSes. We propose to extend the Open Container Interface (OCI),
currently promoted by Docker and other companies, as a generic
abstraction for an isolated OS view.

At a high level, OCI can support any virtualization technology
that can do basic tasks, such as start a virtual environment, pause ex-
ecution, and migrate execution to another physical machine. When
designing S2OS, in addition to the well-established VM based virtu-
alization technology, we also focus concretely on two other specific
technologies: Linux Containers and the Graphene Library OS [45].
Containers offer a measure of efficiency and ease of deployment,
especially in concert with an application packaging tool like Docker.
Graphene is selected because it is lightweight and facilitates easy
deployment of POSIX applications on new platforms, such as Intel’s
SGX enclave environment.

Providing Configurable Process-level Virtualization. The Gra-
phene library OS already has a model of multiple library OS in-
stances collaborating to provide shared OS abstractions, as well as a
basic ability to dynamically isolate applications. The current model
assumes all collaborating library OSes are equally trusting of one
another, and primarily considers disconnection as the failure mode.
We propose here to make this model more robust: with a security
analysis of the risks of a misbehaving library OS instance and make
resulting fixes, handle re-connection, partial connections, and apply
additional scrutiny to questionable remote procedure calls. Graphene
also only uses local IPC; we propose to use the well-supported 9P
protocol from Plan 9 [34] as a building block for inter-host procedure
calls.

In the case of containers, a significant amount of the needed
infrastructure is already present to create isolated or virtualized
views of host abstractions. The main missing component is the
ability to bridge abstractions across multiple hosts. We propose to
also leverage the same RPC protocols from Graphene within the
Linux container implementation, to create virtual OS abstractions
as needed. In general, our goal is to develop a substrate for OS-
level virtualization that is independent of the particular virtualization
technology.

APSys ’17, September 2, 2017, Mumbai, India Gu, Guofei et al.

3.1.2 Networking Building Blocks. While the flow-based, match-
action abstraction is adequate for a conventional network data plane
with packet forwarding as its main functionality (e.g., OpenFlow
switches), such an abstraction is not sufficient for a far richer data
plane of a software-defined infrastructure that incorporates complex
network security functions. The operations on data packets required
by diverse network functions will go beyond simply looking up
and matching certain header fields, perhaps rewriting some of them
or inserting new header fields. Thus, the challenge here is how to
design new abstractions that go beyond todays simple flow-based
match-action data plane abstraction to support complex network
functions.

Extending OVS w/ App and Context Awareness on Hosts and
Mobile Devices. For regular hosts and mobile devices in a typical
enterprise setting, they may not have an underlying hypervisor. How-
ever, having observed that many of them can actually have Open
vSwitch (OVS) or similar mechanisms support in their OS kernel
(e.g., Linux machines and Android devices contain OVS), we can
extend OVS to abstract the host/device into a virtual data plane in or-
der to provide application-flow management (i.e., which application
generates which flow in what host context, which is finer-grained
than simple network flows).

We illustrate a parallel between the existing SDN data plane
switch and our abstraction, which embraces the concept of a “vir-
tual” switch on host/device. While an SDN data plane facilitates
communication amongst a set of network devices via a port-host
mapping, a “virtual” switch provides communication between virtual
ports and software-entities. To enable application-flow management,
we treat all host/device applications and network interfaces (e.g.,
WiFi,3G/4G) as network port entities on a virtual switch. By map-
ping applications and network interfaces to unique virtual ports, we
enable flow management of all application network traffic inside
of our virtual switch. This allows for easy flow management and
efficient application flow isolation, as well the utilization of the
SDN concepts, which readily function in data plane switches. Fur-
thermore, we couple device context information, such as time and
GPS location, with each application network flow. In this way our
controller is granted access to not only application network flow
information but also the context of the application during network
activity. This enables the controller to perform advanced decision
making with fine-grained connection and context information on a
per-app basis for each manged host/device.

3.2 Controller Layer
The objective of the control layer is to provide a set of basic security
management capabilities (or primitives). With these capabilities,
various security applications can be developed, such as fine-grained
access control, isolated (sandboxed) execution, moving targeted
defense, and system wide information flow tracking. More specifi-
cally, we aim to provide the following capabilities (the list will be
expanded over time).

Capability 1: Isolation. The ability to isolate components is a
cornerstone for security. Untrusted apps must be confined and should
not tamper or interfere with any other apps. An untrusted OS also

should not sneak or tamper with the execution of trusted apps. We
can provide isolation at the following different levels.
• Virtual machines. When an OS is trusted, we can execute the

untrusted app in a virtual machine (VM) environment that runs the
trusted OS. The security isolation is accomplished by the virtual
address space separation managed by the OS and hardware. The
access control mechanism provided by the OS also helps isolate
the app. However, inside the VM, an untrusted app may attack
other apps when the app privilege is configured inappropriately
even though OS is trusted, and we therefore need another isolation
mechanism—containers.

• Containers. A container is a process level isolation mechanism.
Containers often share the same underlying OS, ideally to exe-
cute multiple instances of the same applications, Logically, the
app running inside the container cannot tamper with other apps
running in other containers provided that the underlying OS is
trusted. However, when the OS is compromised, all containers
become untrusted.

• Secure enclaves. Recently, with the need of running outsourced
computing in untrusted platforms, there is a growing interest of
designing secure enclaves to protect apps against the underlying
untrusted (malicious) OS with hardware assistance. Intel SGX [4]
represents such a trend, and Haven [8] and Graphene [46] demon-
strate the practicality of running legacy apps with a library OS
running inside SGX enclaves.
With different levels of trustworthiness, we have to provide the dif-

ferent isolation mechanisms. We propose to provide a programmable
interface for security administrators to appropriately configure the
isolation and confine the app execution across a range of trusted
or untrusted host components, from traditional standard VMs, to
containers, or enclaves. We propose to use these mechanisms to
ensure that apps execute with least privilege.

Capability 2: Trust Management. Most security problems hinge
on issues of trust, and current systems would benefit from tools for
managing trust relationships. An app downloaded from untrusted
sources is certainly untrusted, and we have to confine its execution
in order to prevent damage to other applications and the underlying
system. Meanwhile, a trusted app that consumes untrusted input is
also untrusted, since untrusted input can possibly compromise the
program. In addition, an app uploaded to outsourced environment
(e.g., cloud) cannot trust the platform, since infrastructure owners
might steal sensitive data or tamper with a library on the system.
Clearly, there is a lack of mutual attestation in existing platforms.
With SDI, we can introduce a trust measurement interface between
the running app and the underlying hosting platforms, and provide
mutual attestation between a virtual platform and the app.

Capability 3: Risk Management. Isolation is a core security ab-
straction for S2OS. Keeping unrelated users or applications separate
is an essential foundation for end-to-end security. However, there
are a number of real-world scenarios where one may want to think
about isolation as a non-binary property—weighing risk and giv-
ing limited access to a new application, perhaps during a period of
careful monitoring.

Consider running a web service within an SDI that handles sen-
sitive data. Suppose a developer wants to try out a new, freeware

Building a Security OS With Software Defined Infrastructure APSys ’17, September 2, 2017, Mumbai, India

key-value store that boasts improved efficiency. The key-value store
is probably benign, but could include malware. On current infrastruc-
ture, this scenario presents several significant challenges. First, it is
difficult to test a new component of a large cloud application without
replicating all of the infrastructure. Second, it may be hard to do
meaningful evaluation without realistic data. Simple isolation is not
sufficient any more; we need a system abstractions for managing
inherent risks.

We propose to investigate the applicability of an old model—
the “clans and chiefs” microkernel model [28], for drawing risk
boundaries—but apply this approach to modeling risk. Essentially,
the idea is to place a reference monitor at each sub-group boundary,
that is tasked with risk mitigation. Risk mitigation can take several
forms. For instance, before introducing a new application into the
system, one can use SDI to take an end-to-end snapshot of the
current storage contents and configurations—giving the ability to
roll back if things go terribly wrong. Similarly, one might want
to anonymize sensitive data from storage at the application group
boundary, or enforce egress restrictions while monitoring the new
system component.

Capability 4: Monitoring (Introspection). Supervising app exe-
cution and monitoring its behavior has been proved to be a practical
approach for real-world security systems. However, existing security
systems often focus on monitoring for specific attacks at specific
parts of the stack. Attackers can often evade the detection by design-
ing more advanced attacks such as interface bypassing, layer-below
attacks, or network evasion. The opportunity for SDI is that we
can observe network activities, each application’s state, and also
the kernel state, including those invisible ones hidden by attackers,
giving global visibility into system state and unlocking opportunities
for inference of attacks at the whole-system level.

Note that there are established introspection approaches for VM
based virtualization (e.g., using kernel data structures [5, 29, 33, 38],
kernel agent [17, 19, 32, 40, 44], or sibling VMs [13, 15, 16, 39]).
However, these works focus on understanding what the running
OS is doing, rather than into running processes. With our process
virtualization, we need to support introspecting the process from the
infrastructure layer. We propose to extend the library OS with an
introspection built-in support, to inspect the process state out of the
containers.

Capability 5: Information Flow Tracking (IFT). Another key
capability in S2OS is tracking information flows. Tracking informa-
tion flow across the entire SDI creates a complete view for security
auditing, detecting data breaches, and enforcing information-flow-
based access control policies (e.g., no ”write down”). While there
are prior works on information flow tracking within a single host
(e.g., taint analysis [10, 31], or process coloring [25]), systemati-
cally tracking the information flow across the entire infrastructure is
under-explored [51].

Although label creep has been a long-standing challenge for IFT
systems, we believe that tracking information flows can be useful
in a number of practical scenarios. First, there are scenarios where
protecting against exfiltration of sensitive data that should not be
widely touched. For instance, preventing a crytographic signing key
from leaving a given machine can be useful, as most applications

should not handle this data. Second, there are cases where IFT
policies can be too strict, but this data can be useful for security
audits (i.e., “why is this label flowing through this component?”), or
for tuning placement of data on logical components onto physical
resources (i.e., noticing heavy movement of data with a given label
over a link could lead to a migration for efficiency). In other words,
IFT can be useful for analysis and inference about system behavior,
even if automatically making access control decisions would be too
strict. Thus, although IFT-based security is challenging, we believe
there are several practical benefits to integrating IFT into end-to-end
analysis and management.

Capability 6: Checkpoint, Restore, and Migration. One advan-
tage of SDI is the ability to easily checkpoint app state and restore
it on another machine. However, different host systems may not
support all virtualization techniques. For instance, one may not be
able to checkpoint a Linux container instance and run it on a Win-
dows host, which could support a library OS or a hardware virtual
machine. Thus, we propose to define and support a more generic
checkpoint/restore mechanism. As a concrete starting point, we
will take a checkpoint of a running Linux process (including from a
Linux container), and then load the checkpoint into the Graphene
library OS. Similarly, we propose to convert Graphene checkpoints
into a format that can be reconstructed into a Linux process.

By providing the checkpoint, restore, and migration primitives,
we can offer new app level protection mechanisms such as app
evacuation, which evacuates a critical app from a compromised
host by placing it in a “life boat” host where the app can continue
to execute without disruption; app cloning, which clones the app
process – possibly with binary-level randomization — in other hosts
which can further be migrated to other physical hosts to maximize
its survivability.

Capability 7: Auditing and Logging. Similar to many existing
systems that provide logging capabilities for security audit, S2OS
also offers a logging primitive to provide documentary evidence of
the system activities. Since there are already log facilities in existing
systems, the logging in S2OS will primarily focus on the logging
of the primitive executions and the executions controlled by them,
such as how isolation is invoked, how the isolation protected app is
performed (e.g., its system call behavior), and how IFT is tracked.

On the other hand, the sheer volume of data to be generated and
subsequently queried in S2OS will be substantial. Simply logging is
not sufficient, as policy decisions may depend on previous actions;
histories on different machines must be merged, and queries must
also be efficient. We propose to leverage BetrFS [24, 50]—a local
Linux file system that can ingest small writes up to two orders of
magnitude faster than conventional file systems (e.g., ext4 or ZFS),
while preserving efficient queries. In addition to a performance
profile well-suited for ingesting log data, BetrFS has additional
properties that make it attractive for this purpose, such as it supports
multi-version concurrency control, and has significant flexibility in
scheduling I/O and logically integrating information after the fact.

3.3 Application Layer
3.3.1 Application Development Script Language. To facilitate

security application development, we will leverage our previous

APSys ’17, September 2, 2017, Mumbai, India Gu, Guofei et al.

work FRESCO [41], which provides modular, composable security
services for SDN. In particular, we will use a similar concept of
module-composing programming, as motivated by Click [27]. Here,
a module can be a (set of) microservice(s) provided by the S2OS
controller, or user-defined functions. A security function/service
running at the S2OS application layer is realized through an assem-
blage of modules. Each module will define interface such as (i)
input, (ii) output, (iii) parameter, (iv) action, and (v) event. As their
names imply, input and output represent the interfaces that receive
and transmit values for the module. A parameter is used to define
the modules configuration or initialization values. A module can
also define an action to implement a specific operation on network
packets or flows. An event is used to notify a module when it is time
to perform an action. To configure modules through a FRESCO-like
script, developers must first create an instance of a module, and
this instance information is defined in type variable. Developers
can specify a scripts input and output, and register events for it to
process by defining the scripts input, output, parameter, and event
variables. Defining an instance is made very similar to defining a
function in C/C++.

Based on FRESCO, we will investigate how to extend the module
interfaces as well as extend more modules strategically to entire SDI
in this project. We will also extend the FRESCO script language
to support more rich conditional handling in SDI, in particularly
including host-based security capabilities in addition to network-
based functions, to better assist developers in composing various
security functions from elementary modules.

3.3.2 Example Security Applications. With the security capabili-
ties provided at the S2OS control layer, administrators can develop
security applications, similar to how developers write apps using
OS APIs. Below we list several example security applications that
S2OS unlocks.

Fine-grained Access Control. In traditional cyberinfrastructure,
system-level access control and network-level access control only
work individually, without coordination across resources. However,
S2OS enables infrastructure-wide, end-to-end fine-grained access
control. With the previously-mentioned capabilities (namely, trust,
isolation, monitoring, and information flow tracking) offered by the
S2OS control layer, a security administrator can easily develop a
fine-grained access control app to confine the workload execution,
and monitor its behavior and even the information flows. More
specifically, based on the trust level of the to be protected app and
its underlying OS, the security administrator can specify which
isolation mechanism (VMs, containers, enclaves, or network) atop
which the app will be executing, what kind of host the app can talk
to, and how the information can flow to other hosts/apps. Then, the
isolation, monitoring, and information flow tracking capabilities will
work together at the S2OS control layer, to transparently supervise
the app execution and enforce the security policies.

Application Hardening. One of the particular benefits of S2OS is
the ability to more easily create a hardened perimeter (or “shell”)
around a “soft” application. A significant amount of application
policy enforcement will follow naturally from the limits of the SDI
itself in S2OS. In other words, what an application can access is

already limited by SDI rules. However, one may wish to take ad-
vantage of other security features, such as logging, sandboxing, or
deception/honeypot, which requires additional policy writing.

Existing OS-level security modules, such as SELinux or AppAr-
mor, require fairly involved profiles or policies that are difficult to
write. Most users of these hardening mechanisms essentially use
default policies written by a third party for common applications,
and, for uncommon applications, select a highly-permissive default.
One essential aspect of usability is providing tools that make these
policies easy for a security administrator to write.

We expect that we can write a set of policy libraries and templates
that will suffice for most applications, with example templates such
as system call logging, information flow tracking, and deception.
The main challenges of specifying these policies arises when one
needs idiosyncratic restrictions, such as an application-specific filter
on specific types of network outputs. For applications on the “tail”
of uncommon functionality, the developer or administrator may need
to write some policy code. Nonetheless, our overarching goal is to
keep this effort minimal, and commensurate with the complexity of
the policy goal.

Deception. Since software inevitably contains exploitable 0-day
vulnerabilities, we need a mechanism to catch these new attacks.
Honeypots have been practical for this purpose. With the capabili-
ties/primitives provided by our control layer, security administrators
can easily develop light-weight, adaptive, high-interaction, software
honeypots for attacker deception, disinformation, monitoring, and
analysis. In contrast to traditional honeypots, which offer only weak
interactivity and are therefore easily detectable by advanced persis-
tent threats (APTs), we can build a software honeypot that arms live,
commodity server software with deceptive attack-response capabili-
ties. Under our deception framework, detected attacks (detected at
either network or host level) are transparently migrated/redirected to
isolated decoy environments that possess the full interactive power of
the targeted victim app, but misinform adversaries with honey-data
and aggressively monitor adversarial behaviors.

Moving Target Defense. With the isolation, checkpoint, restore,
and migration capabilities, security administrators can use them to
achieve unprecedented level of integrity, security, and resilience
for the execution of mission-critical apps. Specifically, we can
develop a virtualization-based attack resilient execution environment
that can turn a mission-critical app into a moving target that is not
statically coupled with one runtime (including the OS and underlying
hardware, as well as network configurations/environments). Such
an attack resilient execution environment provides strong isolation,
mobility, and resilience at process granularity. The isolation property
means that an assured app will not be negatively affected by other
non-assured apps and their runtime; the migration property allows
the assured app to dynamically move into and out of a host; and
the resilience property guarantees that the assured app can actively
avoid malicious apps and operating systems.

4 RELATED WORK
SDN/NFV-based Network Security. Many recent efforts have been
devoted to addressing various security challenges in SDNs. The
Resonance [?] architecture enables dynamic access control and

Building a Security OS With Software Defined Infrastructure APSys ’17, September 2, 2017, Mumbai, India

monitoring in SDN environments. FloodGuard [48] provides a more
generic DoS attack prevention extension that is not limited to TCP
traffic. SPHINX [?] presents a novel model representation, called
flow-graph, to detect several network attacks against SDN networks.
TopoGuard [21] is a new solution to defend against topology poison-
ing attacks in SDN. FRESCO [?] is an SDN/OpenFlow security
application development framework designed to facilitate the rapid
design of SDN-enabled detection and mitigation modules. Fort-
NOX [37] and SE-FloodLight [36]) are security constraint enforce-
ment kernels for SDN/OpenFlow controllers. FlowGuard [22] is a
framework for building robust SDN firewalls to protect OpenFlow-
based networks. AvantGuard [42] advocates for the use of light-
weight network security functions to enable scalable and vigilant
switch flow management and defend against data-to-control-plane
saturation attacks in SDNs. PBS [20] is a new solution to provide
SDN-based programmable network security in BYOD (Bring Your
Own Device) devices and networks.

Some recent research efforts have used NFV and SDN techniques
to address the inflexibility and inelasticity limitations of traditional
network defense mechanisms [11, 49?]. Bohatei [?] is a flexible
virtual DDoS defense system for effective DDoS attack defense.
VFW Controller [11] is virtual firewall controller that enables safe,
efficient and cost-effective virtual firewall elasticity control. PSI [49]
is a new enterprise network security architecture that enables fine-
grained and dynamic security postures for different network devices.

In contrast, S2OS is a comprehensive framework that provides
security control over various enterprise/cloud/data-center comput-
ing/network units, including both fine-grained application process
executions (through control agents at Hypervisor/Container/Library
OS) and application-aware network flows (through control agents at
extended Open vSwitch software and OpenFlow switches).

Virtualization-based Systems Security. As a layer that runs in
between the hardware and OS layers, the concept hypervisor was
first proposed in the 1960s [35]. In addition to pushing our com-
puting paradigm from multi-tasking to multi-OS, hypervisors have
also pushed security mechanism (e.g., monitoring) from traditional
in-VM to out-of-VM, thereby achieving strong isolation. This is
because guest OSes run on the virtual resources [6] that a VMM
provides, which gives new opportunities for flexibility and control
since VMM is essentially a software layer and software is easier
to modify, migrate, and monitor. Through extracting and recon-
structing the guest OS states at the VMM layer, out-of-VM security
mechanisms become possible, empowering them to control, isolate,
interpose, inspect, secure and manage a VM from the outside [9, 18].
Numerous research has been carried out in developing various secu-
rity solutions with virtulization over the past decade, as summarized
in [7, 23].

5 CONCLUSION AND FUTURE WORK
We have presented the design of S2OS, a security OS designed
for security and management of disparate resources, ranging from
processes to storage to networking. S2OS will offer an easy-to-
use and programmable security model for monitoring and dynam-
ically securing applications. We anticipate S2OS could unlock a

wide range of unprecedented security opportunities, including fine-
grained, dynamic security programmability at infrastructure scale,
and information flow tracking across an entire infrastructure.

S2OS is an ambitious but decomposable, scalable and incremen-
tally implementable architecture. We are actively developing S2OS
currently. The development involves a blend of modular design
practice, theoretical analysis, implementation and experimentation.
To move towards system prototypes, we plan to take a three-step ap-
proach. We will first construct a small-scale S2OS at one institution.
Once successfully tested, we will deploy it at other participating
institutions and then carry out cross-institution integration and test-
ing. The third step is to work with Internet2 [1] and CloudLab [3]
resources, to validate S2OS concepts and methods over the Internet2
and CloudLab platform.

Finally, balancing security and performance is an important fu-
ture direction. Existing research in SDN security (e.g., [20, 42])
already showed some good promise of reasonable performance in
the software-defined networking architecture. As our future work,
we will investigate new techniques to achieve good tradeoffs be-
tween security and performance while designing and implementing
S2OS.

ACKNOWLEDGMENTS
We thank our shepherd Ahmed Ali-Eldin and the anonymous re-
viewers for their insightful comments. This work was supported
in party by the National Science Foundation (NSF-CNS-1700527,
NSF-CNS-1700544, NSF-CNS-1700499, NSF-CNS-1700507, and
NSF-CNS-1700512) and VMware.

REFERENCES
[1] 1996. Internet2. (1996). https://www.internet2.edu/.
[2] 2012. Network Function Virtualisation - Introductory White Paper. https://portal.

etsi.org/nfv/nfv white paper.pdf. (2012).
[3] 2014. CloudLab. (2014). https://www.cloudlab.us/.
[4] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13.

[5] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. 2008. Automatic Inference
and Enforcement of Kernel Data Structure Invariants. In Proceedings of the 2008
Annual Computer Security Applications Conference (ACSAC ’08). IEEE Computer
Society, Washington, DC, USA, 77–86. https://doi.org/10.1109/ACSAC.2008.29

[6] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM symposium on Operating
systems principles (SOSP ’03). 164–177. https://doi.org/10.1145/945445.945462

[7] Erick Bauman, Gbadebo Ayoade, and Zhiqiang Lin. 2015. A Survey on Hyper-
visor Based Monitoring: Approaches, Applications, and Evolutions. Comput.
Surveys 48, 1, Article 10 (Aug. 2015), 33 pages.

[8] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[9] Peter M. Chen and Brian D. Noble. 2001. When Virtual Is Better Than Real. In
Proceedings of the Eighth Workshop on Hot Topics in Operating Systems (HOTOS
’01). 133–. http://dl.acm.org/citation.cfm?id=874075.876409

[10] Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong. 2006. Minos: Archi-
tectural support for protecting control data. ACM Trans. Archit. Code Optim. 3, 4
(2006), 359–389.

[11] Juan Deng, Hongda Li, Hongxin Hu, Kuang-Ching Wang, Gail-Joon Ahn, Ziming
Zhao, and Wonkyu Han. 2017. On the Safety and Efficiency of Virtual Firewall
Elasticity Control. In Proceedings of the 24th Network and Distributed System
Security Symposium (NDSS’17).

[12] Edsger W. Dijkstra. 1968. The structure of the THE-multiprogramming system.
Commun. ACM 11 (May 1968), 341–346. Issue 5. https://doi.org/10.1145/357980.
357999

https://www.internet2.edu/
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://portal.etsi.org/nfv/nfv_white_paper.pdf
https://www.cloudlab.us/
https://doi.org/10.1109/ACSAC.2008.29
https://doi.org/10.1145/945445.945462
http://dl.acm.org/citation.cfm?id=874075.876409
https://doi.org/10.1145/357980.357999
https://doi.org/10.1145/357980.357999

APSys ’17, September 2, 2017, Mumbai, India Gu, Guofei et al.

[13] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. 2011. Virtuoso: Narrowing the Semantic Gap in Virtual Machine Intro-
spection. In Proceedings of the 32nd IEEE Symposium on Security and Privacy.
Oakland, CA, USA, 297–312.

[14] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2016. Microservices:
yesterday, today, and tomorrow. arXiv preprint arXiv:1606.04036 (2016).

[15] Yangchun Fu and Zhiqiang Lin. 2012. Space Traveling across VM: Automatically
Bridging the Semantic Gap in Virtual Machine Introspection via Online Kernel
Data Redirection. In Proceedings of 33rd IEEE Symposium on Security and
Privacy.

[16] Yangchun Fu and Zhiqiang Lin. 2013. Bridging the Semantic Gap in Virtual
Machine Introspection via Online Kernel Data Redirection. ACM Trans. Inf. Syst.
Secur. 16, 2 (2013). https://doi.org/10.1145/2505124

[17] Yangchun Fu, Junyuan Zeng, and Zhiqiang Lin. 2014. HYPERSHELL: A Prac-
tical Hypervisor Layer Guest OS Shell for Automated in-VM Management. In
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Con-
ference (USENIX ATC’14). USENIX Association, Berkeley, CA, USA, 85–96.
http://dl.acm.org/citation.cfm?id=2643634.2643644

[18] Tal Garfinkel and Mendel Rosenblum. 2003. A virtual machine introspection
based architecture for intrusion detection. In Proceedings Network and Distributed
Systems Security Symposium.

[19] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. 2011. Process Implant-
ing: A New Active Introspection Framework for Virtualization. In Proceedings of
the 2011 IEEE 30th International Symposium on Reliable Distributed Systems
(SRDS ’11). 147–156. https://doi.org/10.1109/SRDS.2011.26

[20] Sungmin Hong, Robert Baykov, Lei Xu, Srinath Nadimpalli, and Guofei Gu. 2016.
Towards SDN-Defined Programmable BYOD (Bring Your Own Device) Security.
In Proceedings of the 2016 Network and Distributed System Security Symposium
(NDSS’16).

[21] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. 2015. Poisoning Network
Visibility in Software-Defined Networks: New Attacks and Countermeasures. In
Proceedings of 2015 Annual Network and Distributed System Security Symposium
(NDSS’15).

[22] Hongxin Hu, Wonkyu Han, Gail-Joon Ahn, and Ziming Zhao. 2014. Flow-
Guard: building robust firewalls for software-defined networks. In Proceedings
of ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN’14). ACM, 97–102.

[23] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E Porter, and Radu Sion.
2014. Sok: Introspections on trust and the semantic gap. In Security and Privacy
(SP), 2014 IEEE Symposium on. IEEE, 605–620.

[24] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng
Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael
Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.
Porter. 2015. BetrFS: A Right-Optimized Write-Optimized File System. In FAST.
301–315.

[25] Xuxian Jiang, AAron Walters, Dongyan Xu, Eugene H Spafford, Florian Buch-
holz, and Yi-Min Wang. 2006. Provenance-aware tracing ofworm break-in and
contaminations: A process coloring approach. In 26th IEEE International Confer-
ence on Distributed Computing Systems (ICDCS’06). IEEE, 38–38.

[26] G Kandiraju, Hubertus Franke, MD Williams, Malgorzata Steinder, and SM
Black. 2014. Software defined infrastructures. IBM Journal of Research and
Development 58, 2/3 (2014), 2–1.

[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek. 2000. The Click
Modular Router. ACM Transactions on Computer Systems (August 2000).

[28] Jochen Liedtke. 1992. Clans & Chiefs. In Architektur von Rechensystemen, 12.
GI/ITG-Fachtagung. 294–305.

[29] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
2011. SigGraph: Brute Force Scanning of Kernel Data Structure Instances
Using Graph-based Signatures. In Proceedings of the 18th Annual Network and
Distributed System Security Symposium (NDSS’11). San Diego, CA. http://www.
isoc.org/isoc/conferences/ndss/11/pdf/3 3.pdf

[30] N. Mckeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. 2010. OpenFlow: enabling innovation in campus
networks. ACM SIGCOMM Computer Communication Review 38, 2 (2010),
69–74.

[31] James Newsome and Dawn Song. 2005. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity software.
In Proceedings of the 14th Annual Network and Distributed System Security
Symposium (NDSS’05). San Diego, CA.

[32] Bryan D. Payne, Martim Carbone, Monirul I. Sharif, and Wenke Lee. 2008.
Lares: An Architecture for Secure Active Monitoring Using Virtualization. In
Proceedings of 2008 IEEE Symposium on Security and Privacy. IEEE Computer
Society, Washington, DC, USA, 233–247. https://doi.org/10.1109/SP.2008.24

[33] Nick L. Petroni, Jr. and Michael Hicks. 2007. Automated detection of per-
sistent kernel control-flow attacks. In Proceedings of the 14th ACM confer-
ence on Computer and communications security (CCS ’07). ACM, 103–115.
https://doi.org/10.1145/1315245.1315260

[34] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. 1990. Plan 9 from
Bell Labs. In In Proceedings of the Summer 1990 UKUUG Conference. 1–9.

[35] Gerald J. Popek and Robert P. Goldberg. 1974. Formal requirements for virtu-
alizable third generation architectures. Commun. ACM 17, 7 (1974), 412–421.
https://doi.org/10.1145/361011.361073

[36] P.A. Porras, S. Cheung, M. Fong, K. Skinner, and V. Yegneswaran. 2015. Securing
the Software-Defined Network Control Layer. In In Proceedings of the ISOC
Network and Distributed System Security Conference (NDSS).

[37] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson,
and Guofei Gu. 2012. A Security Enforcement Kernel for OpenFlow Networks.
In Proceedings of the First Workshop on Hot Topics in Software Defined Networks
(HotSDN ’12). ACM.

[38] Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2009. Multi-aspect profiling of
kernel rootkit behavior. In Proceedings of the 4th ACM European conference
on Computer systems (EuroSys ’09). 47–60. https://doi.org/10.1145/1519065.
1519072

[39] Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. 2014. Hybrid-Bridge: Efficiently
Bridging the Semantic-Gap in Virtual Machine Introspection via Decoupled
Execution and Training Memoization. In Proceedings of the 21st Annual Network
and Distributed System Security Symposium (NDSS’14). San Diego, CA.

[40] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. 2009. Secure
in-VM monitoring using hardware virtualization. In Proceedings of the 16th
ACM conference on Computer and communications security (CCS ’09). 477–487.
https://doi.org/10.1145/1653662.1653720

[41] Seungwon Shin, Phil Porras, Vinod Yegneswaran, Martin Fong, Guofei Gu,
and Mabry Tyson. 2013. FRESCO: Modular Composable Security Services for
Software-Defined Networks. In Proceedings of the 20th Annual Network and
Distributed System Security Symposium (NDSS’13).

[42] Seungwon Shin, Vinod Yegneswaran, Phil Porras, and Guofei Gu. 2013. AVANT-
GUARD: Scalable and Vigilant Switch Flow Management in Software-Defined
Networks. In Proceedings of the 20th ACM Conference on Computer and Com-
munications Security (CCS13).

[43] John Sonchack, Adam J. Aviv, Eric Keller, and Jonathan M. Smith. 2016. En-
abling Practical Software-defined Networking Security Applications with OFX.
In Network and Distributed System Security Symposium (NDSS).

[44] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and Dongyan Xu. 2011. Process
out-grafting: an efficient ”out-of-VM” approach for fine-grained process exe-
cution monitoring. In Proceedings of the 18th ACM conference on Computer
and communications security (CCS’11). ACM, Chicago, Illinois, USA, 363–374.
https://doi.org/10.1145/2046707.2046751

[45] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William
Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira, and
Donald E. Porter. 2014. Cooperation and Security Isolation of Library OSes for
Multi-Process Applications. In EuroSys. 9:1–9:14.

[46] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In USENIX.

[47] Tore Ulversoy. 2010. Software defined radio: Challenges and opportunities. IEEE
Communications Surveys & Tutorials 12, 4 (2010), 531–550.

[48] Haopei Wang, Lei Xu, and Guofei Gu. 2015. FloodGuard: A DoS Attack Pre-
vention Extension in Software-Defined Networks. In Proceedings of the 45th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN’15).

[49] Tianlong Yu, Seyed K Fayaz, Michael Collins, Vyas Sekar, and Srinivasan Se-
shan. 2017. PSI: Precise Security Instrumentation for Enterprise Networks. In
Proceedings of the 24th Network and Distributed System Security Symposium
(NDSS’17).

[50] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,
Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Michael Bender, Martin
Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter. 2016.
Optimizing Every Operation in a Write-Optimized File System. In FAST.

[51] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. 2008. Securing distributed
systems with information flow control. In NSDI.

https://doi.org/10.1145/2505124
http://dl.acm.org/citation.cfm?id=2643634.2643644
https://doi.org/10.1109/SRDS.2011.26
http://www.isoc.org/isoc/conferences/ndss/11/pdf/3_3.pdf
http://www.isoc.org/isoc/conferences/ndss/11/pdf/3_3.pdf
https://doi.org/10.1109/SP.2008.24
https://doi.org/10.1145/1315245.1315260
https://doi.org/10.1145/361011.361073
https://doi.org/10.1145/1519065.1519072
https://doi.org/10.1145/1519065.1519072
https://doi.org/10.1145/1653662.1653720
https://doi.org/10.1145/2046707.2046751

	Abstract
	1 Introduction
	2 Overview
	3 S2OS Design
	3.1 Infrastructure Layer
	3.2 Controller Layer
	3.3 Application Layer

	4 Related Work
	5 Conclusion and Future Work
	References

