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ABSTRACT
When flash was introduced, wear-out was a known problem. Over
time, a number of techniques have been developed to estimate the
expected number of program/erase cycles under typical usage pat-
terns, and sufficiently over-provision the cells such that the device
meets its expected lifespan, even if individual cells fail. This paper
started as a simple experiment: measuring whether the lifespan of
flash devices in smartphones and other mobile devices, match the
estimates. To our surprise, we find that, in a matter of days, simple,
unprivileged applications can render the drive of several smart-
phones (and thus, the phone) inoperable. This result is concerning,
as it means that installing malicious or poorly-written software
could destroy the device itself. We experimentally demonstrate
the problem, discuss reasons why it occurs, and consider potential
solutions.

CCS CONCEPTS
• Security and privacy → Mobile platform security; • Hard-
ware → External storage; • Software and its engineering →
Operating systems;
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1 INTRODUCTION
Flash technology is becoming increasingly popular for non-volatile
data storage, especially on mobile devices. Flash has many advan-
tages, such as fast random access, shock-resistance, high density,
and decreasing costs. An important limitation is that flash cells have
a limited number of program/erase cycles (i.e., writes). Flash cells
encode logical bits by charging cells with a given voltage level; this
charging mechanism eventually wears out individual cells. Vendors
and applications apply many methods to increase the lifetime of
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flash packages [2, 15, 19, 23, 28, 30, 36, 47, 50, 51, 80]. Flash drive
lifetime can be roughly estimated using “back-of-the-envelope” cal-
culations: take the expected number of writes for the advertised
LBA space over a 3 year period, divide by the expected P/E cycles
per cell, and that will give you the number of physical cells to
over-provision [10, 14, 17, 35, 52, 55, 62, 69, 70, 72].

This paper empirically demonstrates that complacently relying
on the “back-of-the-envelope” is a problem for mobile flash. We ex-
plain the I/O performance characteristics of mobile storage devices.
We then demonstrate how to issue workloads that can render such
devices inoperable within amatter of days. Finally, we present a triv-
ial, unprivileged app that is able to quickly cause the smartphone’s
internal storage to enter a state where the storage device is not
considered reliable anymore, and finally gets the device into an un-
bootable state (i.e., “bricks” the device). Our method works by using
less than 3% of the system’s storage capacity, is applicable to a range
of modern mobile storage devices, and is not hampered by various
optimizations such as improved mobile storage interfaces [41] and
hybrid memory hierarchies [21, 51]. In fact, the technology trends
in future generations of flash devices, such as encoding more bits
in fewer cells with more, fine-grained charging cycles (MLC and
TLC flash), will exacerbate this problem.

This issue raises a practical security concern formobile users: mo-
bile ecosystems casually create a false sense of trust in consumers
who are unwary of downloading third-party applications [34, 38,
56], rooting their devices, and trusting applications from market-
places that may perform only a lax review process [58, 74, 82]. More-
over, storage in mobile devices is not user-serviceable; in terms of
repair cost, destroying the flash is tantamount to destroying the
device. We focus here on smartphones, but we believe the same
issues apply to any small, flash-based devices on which third-party
software can be loaded, potentially including critical infrastructure
or internet-connected medical devices.

From a research perspective, this raises the question: how do we
design systems for managing permanently-consumable resources?
Issues such as disk scheduling or space allocation are treated as
performance optimizations; in reality, a “free” app can become
rather expensive for a user, yet current systems are not equipped
to help the user reason about these issues. It is unclear whether file
system design can mitigate this problem; designs that reduce write
amplification may help, although part of the problem may be in the
device firmware.

https://doi.org/10.1145/3102980.3102988
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2 THE PERCEPTION OF FLASH LIFETIME
This section explains why flash has limited lifetime, details methods
to extend the lifetime, and how lifetime is perceived by users and
vendors.

2.1 Background
Flash packages are divided into blocks, typically 256–2048 KB in
size. Blocks are further divided into pages, typically 4–16 KB in
size. Pages are stored on physical wordlines, which are serially-
connected cells. When data is written, the cells are electrically
charged to be above or below a predefined voltage threshold. The
logical value of a cell (e.g., a 0 or 1) is read by comparing its measured
voltage to the threshold voltages.

At the granularity of a cell, charge can only be added, pushing
logical values in one direction; to rewrite a page, one must lower
the voltage of some cells. Lowering voltage requires an erase opera-
tion, which is implemented at the granularity of a block. Crucially,
the program/erasure process degrades the cell, and worsens over
time [17, 59]. Small electric charges tend to accumulate in cells,
which eventually cause logical bit errors. The result is that, after
a number of Program/Erase (P/E) cycles, flash blocks produce too
many bit errors to be transparently corrected with parity checks.

The problem of flash endurance is exacerbated by the way ven-
dors increase densities of flashmemories. Modern flash packages dif-
ferentiate between increasingly smaller levels of electrical charges.
Thismethod increases the likelihood that small, accumulated charges
will cause bit errors. Earlier generations of flash chips, which store
only 1 bit per cell, achieved figures of up to 100K P/E cycles. More
modern chips which typically store two logical bits per cell, can
only endure 3–10K P/E cycles [32, 65], and numbers as low as 1K
P/E cycles have been reported when storing three bits per cell.

2.2 Extending Flash Lifetime
Many ways have been suggested to increase the lifetime of flash-
based storage devices. Primarily, research in this area focused on
two directions. Wear-leveling policies were suggested to ensure an
equal distribution of P/E cycles over flash blocks [2, 13, 30]. Another
significant body of work is dedicated to Error Correction Coding
(ECC) schemes [15, 28], which give a measure of tolerance to bit
errors as the device ages.

Other methods for extending SSD lifetime include adjusting
the reference voltage levels up over time [19], hybrids of high
and low-endurance flash memories [21, 51], periodic refreshing of
data [20, 80], identifying pages with low endurance [44], additional
over-provisioning [36], data reduction [23, 76], and improving host-
side I/O applications and access patterns [43, 47, 50].

Over a long period, flash can heal as trapped charge dissipates.
Recent research has proposed to accelerate the process by applying
heat to worn out cells, accelerating the process of freeing trapped
electrons [22, 24, 25, 77]. However, this technology is not yet widely
used.

2.3 SSD Lifetime Estimation in the Wild
Lifetime estimates of flash packages allow us to speculate on the
lifetime of SSDs. For example, we consider a typical consumer-grade

SSD which can endure 3K P/E cycles [65]. Even if we conserva-
tively assume that various optimizations in hardware, firmware,
and software balance out ill-behaved user workloads, it is fair to
assume that the SSD can endure at least as many rewrites as its
underlying storage media, i.e., 3K rewrites of the drive’s entire data.
Therefore, the drive can be completely rewritten three times a day
over for three years.

Several tests corroborate this calculation. Several datacenter
providers independently concluded that various SSDs last for years [57,
65], a high figure under relatively strenuous usage patterns. Others
found that even consumer-level SSDs can write petabytes of data be-
fore failing [10, 69]. Such findings lead many consumers to believe
that SSDs last for extremely long periods of time [14, 52, 69] since
“modern SSDs easily write far more data than most consumers will
ever need” [69]. This view is also prevalent in the research com-
munity [17, 55]. Some researchers even posit that manufacturers’
endurance estimates are “extremely conservative” [35].

Drive warranties are a concrete and conservative measure for
SSD usage and lifetime expectations. Existing warranties from ma-
jor vendors demonstrate that they too expect modern flash-based
drives to last for years under typical usage patterns. Samsung SSDs
ship with a limited 3–10 year warranty [62], contingent on the vol-
ume of writes issued to the device. Intel [39] and Toshiba [70, 72]
provide similar guarantees for various SSD offerings. SanDisk also
offers a 1–10 year warranty for many of its products [64], and a
lifetime guarantee for a variety of low-end storage devices (i.e., SD
cards).

Such guarantees from multiple leading vendors, coupled with
the fact that commercial SSD products last for years and allow data
on the device to be entirely rewritten several thousands of times,
reflect a common notion that endurance is effectively a non-issue.

3 WHAT ABOUT MOBILE STORAGE?
This section explains the reasons why we focus this study on mobile
devices, and why we suspected there might be a problem with flash
lifespan on mobile devices.

Increasing Popularity of Smartphones. Users increasingly switch
from personal computers to mobile devices. Despite the falling
prices of hardware, personal computer sales are declining [31, 45,
75]; among other reasons, because of “the inexorable growth of
smartphones and other mobile devices” [45] as “consumers in this
segment have high dependency on smartphones” [31].

False Sense of Safety. Users have a relatively high degree of trust
in mobile ecosystems for several reasons. First, the rules that gov-
ern the ecosystem of mobile devices are stricter than the ones for
personal computers. Mobile operating systems employ tighter secu-
rity models [7–9] to prevent applications from accessing sensitive
system information, and the data of other applications. For example,
the default settings of most desktop operating systems do not pre-
vent a weather application from accessing music files in the media
player’s library. Second, mobile device users typically download
applications from large marketplaces such as Apple’s App Store for
iOS and Google Play for the Android OS. Although it is not strictly
safe [58, 74, 82], marketplaces employ a review process to identify
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Figure 1: Write performance of external and smartphone eMMC cards.

some security problems before an application is made available to
end users [16, 67].

Mobile ecosystems still have security problems [34, 38, 56], and
users engage in risky behavior. Over a third of users install third-
party applications, such as apps from unknown providers. 16% of
users jailbreak or root their devices. A similar portion of users
install apps requesting unnecessary permissions [29, 38]. Various
apps cause serious harm, whether in the form of malware [74, 82]
or poorly written code, as recently demonstrated in a bug in the
Spotify app that redundantly issued large volumes of I/O to the
underlying storage [26].

The result is a false sense of security, as users are more inclined
to install harmful apps, including apps that may destroy the under-
lying storage in their mobile device.

Mobile Storage: Unknown Unknowns. Full-fledged SSDs are high-
capacity, multi-chip devices, with high-end controllers and large
onboard RAM. The specifications, performance characteristics, and
lifetime estimates of SSDs are usually made public by vendors, as
SSDs can easily be purchased and installed independently by con-
sumers. Mobile storage devices are different in many senses: they
are low-cost, have much smaller capacity, and typically contain
only a few flash chips, which are managed using a simple controller.
Unlike SSDs, mobile storage devices are usually soldered down to
the mobile platform at the manufacturing process and accessed
through dedicated interfaces [40, 41]. Vendors generally do not
publicly detail the specifications, performance characteristics, life-
time guarantees, and warranties, for these devices. In summary,
vendors don’t make any claims about longevity, and have a much
tighter hardware budget, which in turn limits the applicability of
many common lifespan extension techniques.

4 THE PROBLEM
In this section we measure the performance characteristics of sev-
eral mobile flash devices, and then show that all of these devices can
be worn out relatively quickly, despite differences in the underlying
architecture and hardware.

4.1 Evaluation Setup
All of our experiments use embedded flash storage devices like
eMMC, uSD or UFS, which are currently the prevailing mobile stor-
age solutions on the market. The first class of measured devices
includes two external eMMC chips, Toshiba THGBMBG6D1KBAIL
8GB eMMC[71], and SanDisk 16GB iNAND 7030 [63], referred to
as “eMMC 8GB” and “eMMC 16GB”, respectively. All experiments
on external eMMC chips were performed using the ODROID C2
platform [33]. We also experiment with Kingston SDC4/16GB [49]
(labeled “uSD 16GB”), a conventional MicroSD card that is com-
monly used as external, additional storage in smartphones.

The second class of devices is smartphones. We conduct most
of our experiments on a Moto E 2nd Gen smartphone [5], a mid-
range smartphone with 8GB internal eMMC storage. We also use a
Samsung S6 smartphone [6], a high-end smartphone with 32GB of
internal storage. The Samsung smartphone uses a UFS [41] storage
device, which is a recent successor to eMMC. We refer to these
phones as “Moto E 8GB” and “Samsung S6 32GB”, respectively.
We also examine two budget smartphones, referred to as “BLU
512MB”[4] and “BLU 4GB”[3], to see how cheaper hardware affects
lifespan.

The operating systems involved in the experiments include
Linux and Android systems. Specifically, the experiments on exter-
nal eMMC chips and MicroSD cards are conducted on Linux sys-
tem (Ubuntu 16.04 LTS with kernel version 3.14.79) with Ext4[54]
file systems. Smartphone experiments are conducted using their
stock Android systems, with versions including 5.1 (Moto E 8GB),
6.0.1 (Samsung S6 32GB), and 4.4 (BLU 512MB, BLU 4GB). Most of
these smartphones use the default Ext4 file system, except the Moto
E 8GB which uses F2FS[50]. To study the influences introduced by
file systems, we conducted the same experiments on two Moto E
8GB phones, one with F2FS and the other with Ext4. In the rest
of this paper, Ext4 will be the default file system unless specified
otherwise.
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4.2 Performance Characteristics
We first explore the I/O characteristics of eMMC chips, to under-
stand their behavior and find the most problematic I/O access pat-
terns for these devices. Figure 1 shows the write performance micro-
benchmark results for write I/O patterns (sequential/random) with
different synchronous request sizes. For brevity, we omit read re-
sults, which were similar to the write results.

We draw the following conclusions from these results:
• eMMC chips outperform the MicroSD card in all I/O pat-

terns, including random I/O.
• eMMC chips perform similarly for random and sequential

access patterns.
• eMMC write I/O throughput generally scales linearly until

it plateaus.
These results do not match the common assumption that eMMC

chips are essentially MicroSD cards with soldered-down pack-
ages [27, 48]. If this were the case, the I/O performance of eMMC
devices would have been much worse due to increased garbage
collection overhead and reduced parallelism [48, 73]. We conclude
that the I/O performance of modern eMMC devices hinges on re-
quest size. Larger requests utilize more internal hardware units in
parallel [2, 79] (e.g., chips) and increase I/O performance until full
internal parallelism is reached.

4.3 External eMMCWear-out
Based on the micro-benchmark results, we hypothesize that eMMC
chips can serve a large volume of intense write I/O activity within
a relatively short span of time. Such write activity can quickly
consume the P/E cycle quota of the underlying flash cells.

To test this hypothesis we use the eMMC lifetime estimation
indicator. This indicator partitions the estimated lifespan of the
chip (as monitored by the firmware) into 11 levels starting from
1 to 11. When the indicator has value n, it means (n − 1) ∗ 10% ∼

n ∗ 10% of this chip’s lifetime was consumed. Indicator value of
11 means the chip has exceeded its maximum estimated lifetime,
may introduce uncorrectable errors in stored data, and should be
considered unreliable[40].

We repeatedly rewrote small, randomly-selected regions of four
100MB files on each external card, and measured the wear-out
indicator, shown in Figure 2. The results show that the required I/O
volume is mostly constant throughout the lifetime of the devices.
Specifically, it takes a maximum of 992GiB to increment the wear-
out level by 10% in the 8GB eMMC chip. From the OS’s perspective,
this is roughly three times lower than the “back-of-the-envelope”
three thousand or more complete rewrites. Moreover, at a maximum
throughput of 20 MiB/s, one could write this volume of data in 140
hours (6 days). For the 16GB eMMC chip, 23 TiB of writes are
required to reach end-of-life after 164 hours (7 days) at 40 MiB/s.

Advanced Factors Affecting Wear-out. We further explore addi-
tional factors that may affect the wear-out time of eMMC chips. The
first factor is internal write overheads [30, 36]. The performance of
flash storage systems is highly affected by write amplification—the
amount of garbage collection overhead required to make way for
new writes. Write amplification can be increased by reducing the
amount of free space in the system.
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Figure 2: Amount of I/O needed to increment the wear-out
indicator on two external eMMC chips.

The second factor we explored is storage heterogeneity. Some
flash-based storage devices combine different types of flash memo-
ries. The faster, more expensive memory has a higher lifetime, and
is used sparingly for storing hot data and caching purposes [37].
For such hardware architectures, eMMC supports two different
wear-out indicators, one for each memory type (labeled “Type A”
and “Type B” ). Note that these different memory types are managed
by FTL, and presented to the OS as a single device. The distinction
is only visible at the level of these differentiated wear indicators.

To explore these factors we tested the time to increment the wear-
out counters by varying (1) I/O access patterns (small random/large
sequential); and (2) Space utilization (0%-90% of static data). We
performed our tests on the eMMC 16GB model, which employs a
hybrid storage design. Table 1 shows the wear-out counter value
for each memory type over the course of our tests.

The results indicate that memory “Type B” is steadily wearing
out under various I/O patterns. The “Type A” memory requires
almost 6x more writes to increment its wear-out indicator from 1–2
(i.e., increment 1–6 for “Type B”). These results led us to conclude
that “Type A” is the smaller, more performant type of memory.

We also note that “Type A” memory wears out much faster under
high utilization setups, while “Type B” memories wear-out much
slower. We further tested this result by modifying the experiment’s
access patterns so that data rewrites are aimed at the large uti-
lized space instead of the free space (“Type B” 8-9, “Type A” 3-7 in
Table 1). In this setup the wear-out rate is further increased. We
believe these results indicate that the firmware of this specific chip
model dynamically combines “Type A” and “Type B” memories
into a single storage pool when the device is highly utilized and
fragmented. The resulting additional free space helps reduce write
amplification.

4.4 Smartphone Wear-out Experiments
Finally, we perform wear-out experiments on smartphones. Mobile
applications, by default, do not have direct access to the underly-
ing storage device. Therefore, we used a simple application (963
LoC, mostly for UI and various Android hooks) that continuously
rewrites 100MB files in the application’s private storage area, which
is allocated to the application by default. Notably, our application
required no special permissions.
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Type A Flash Cell Type B Flash Cell

Indic.
I/O Vol.
(GiB)

Increment
Time (Hour) I/O Pattern

Space
Util. Indic.

I/O Vol.
(GiB)

Increment
Time (Hour) I/O Pattern

Space
Util.

1-2 11935.94 - - -

1-2 2210.16 28.23 4 KiB rand 0%
2-3 2232.42 28.66 4 KiB rand 0%
3-4 2302.73 15.77 128 KiB seq 0%
4-5 2303.52 15.66 128 KiB seq 0%
5-6 2232.81 28.66 4 KiB rand 0%

6-7 2151.17 29.52 4 KiB rand 90%+

2-3 3903.52 - - - 7-8 2289.45 27.41 4 KiB rand 50%+

8-9 2232.42 103.93 4 KiB rand rewrite 90%+

3-4 439.06 20.44 4 KiB rand rewrite 90%+
4-5 439.45 20.42 4 KiB rand rewrite 90%+
5-6 438.67 20.39 4 KiB rand rewrite 90%+
6-7 439.06 20.47 4 KiB rand rewrite 90%+

... ... ... ... ... ... ... ... ... ...
Table 1: eMMC 16GB wear-out indicators over time (higher is worse). Lower rows indicate later measurements.
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Figure 3: Time to increment wear-out indicators on two
smartphone models and two external eMMC chips.

Figure 3 illustrates the experiment time required to increment
the wear-out counter for the two tested phone models, based on
the volume of writes required and the maximum write throughput
of the phone’s storage device. For comparison we also include the
relevant results for the two external eMMC chips. Timing results
vary, even for the same device model, most likely due to firmware-
specific behaviors and optimizations. Even so, we indicate that the
storage device in all phone models can be worn out in a matter of
days to a few weeks. In the two budget smartphones “BLU 512MB”
and “BLU 4GB” the eMMC chip did not provide reliable wear-out
indications. However, both phones were bricked within two weeks.

Figure 4 shows the I/O volume needed to increment the wear-out
indicator on two Moto E 8GB phones, using the F2FS and Ext4 file
systems respectively. The results on the phone which uses the Ext4
file system exhibit similar wear-out characteristics to the eMMC
8GB chip in Figure 2. With F2FS, wearing out the phone’s storage
requires about half of the I/O volume, because the additional map-
ping mechanism in F2FS doubles the amount of I/O reaching the
storage device under 4KiB synchronous writes. On the other hand,
the wear-out workload has lower throughput when using F2FS.
Therefore, the time required to increment the wear-out indicator
when using F2FS is longer than Ext4, as shown in Figure 3. This

comparison demonstrates that using F2FS, a flash-friendly file sys-
tem, does not mitigate the wear-out problem, except inasmuch as
it inadvertently rate limits all I/O to the device.

Detection. We experiment with the difficulty of hiding a mali-
cious, I/O intensive application on Android. We observe two likely
indicators of a problematic app that would manifest before the de-
vice is bricked, and find that both are easily evaded. First, Android
monitors energy consumption, but only when on battery. Thus, we
can evade detection via power monitoring by only running I/O in-
tensive work when the phone is charging; the app can tell when the
phone is charging. Second, Android shows apps currently running
in background or as services (cf., ps on Unix). We observe that the
refresh time for this monitor is around one second, and the app can
detect when the screen is lit. By suspending malicious I/O when
the screen is on, one can effectively evade this process monitor.
In summary, most phones spend a significant fraction of the day
charging with the screen disabled; even a stealthy version of this
experiment could brick a phone within some reasonable factor of
the time in these experiments. We note that continuously running
malicious applications may cause the phone to abnormally heat
up, which may raise the suspicion of users, though such extent of
heating may be attributed to heat generated by the charging pro-
cess. We leave the exploration of this, and other possible detection
methods for the suggested malicious app as future research.

4.5 Discussion on solutions
Although a systematic solution remains an open problem, we con-
sider several practical solutions to mitigate the problem of wearing
out mobile flash storage.

First, the system may choose to expose and monitor the wear-
out indicator to applications and users, similarly to the S.M.A.R.T.
system on disks. Although this solution would not help pinpoint
the application which is harming the device, it can at least provide
an indication to users that the device’s lifespan may be in jeopardy.

To help recognize potential malicious applications, the system
can collect app-specific I/O statistics, much like the cellular data
usage. Users can then locate applications which are issuing an
unexpected amount of I/O.
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Figure 4: Amount of I/O needed to increment the wear-out
indicator on twoMoto E 8GB smartphoneswith different file
systems.

The system may also try to limit application I/O to a rate that en-
sures an acceptable device lifespan. However, this may harm benign
applications that rely on bursts of I/O requests (e.g., file transfer),
and negatively affect user experience. A more refined approach
would distinguish between benign and malicious I/O patterns, to
selectively rate limit only harmful applications without affecting
the performance of normal applications. We plan to investigate the
efficacy of this approach in future work, although such a solution
should be driven by a model of expected mobile application I/O
behavior.

5 RELATEDWORK
Access control of various platform components is a prominent is-
sue in mobile devices research [11, 12, 18, 42, 60, 78]. However,
these efforts are usually geared towards enforcing permissions and
preserving privacy rather than the integrity of physical resources.
Aware[61] provides a security framework to manage app accesses
to I/O devices. But it is mainly used to prevent remote access tro-
jans from accessing sensitive I/O devices (e.g., camera), and is not
suitable to avoid high-volume I/O workloads.

The consumption of power, another depletable resource in mo-
bile devices, has also gained much attraction in recent years. Tools
to monitor [68, 81], save [1, 46, 66, 68, 83] and rate limit [53] power
consumption were suggested both by researchers and as commer-
cial tools. Power, unlike flash lifetime, is also a renewable resource.
Even so, we believe that some of these approachesmay be applicable
for the problem presented in this work.

6 CONCLUSIONS
The life of a mobile flash device is shorter than users think, and
this lifespan is easily squandered by a buggy or malicious app. It
is unclear whether simple approaches, such as rate limiting, will
be effective without harming usability of desirable applications.
Perhaps designing storage systems that reduce write amplification
will help, but enough about mobile storage is hidden that it is hard
to tell what is simply within the hardware design, and what could

be improved in software or firmware. OS designs historically have
not had abstractions for budgeting a non-renewable resource, but
our measurements indicate this is a timely research topic.
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