
Understanding Transactional Memory Performance
Donald E. Porter and Emmett Witchel

The University of Texas at Austin
{porterde,witchel}@cs.utexas.edu

Abstract—Transactional memory promises to generalize trans-
actional programming to mainstream languages and data struc-
tures. The purported benefit of transactions is that they are easier
to program correctly than fine-grained locking and perform just
as well. This performance claim is not always borne out because
an application may violate a common-case assumption of the
TM designer or because of external system effects. This paper
carefully studies a range of factors that can adversely influence
transactional memory performance.

In order to help programmers assess the suitability of their
code for transactional memory, this paper introduces a formal
model of transactional memory as well as a tool, called Syncchar.
Syncchar can predict the speedup of a conversion from locks to
transactions within 25% for the STAMP benchmarks. We also use
the Syncchar tool to diagnose and eliminate a starvation pathology
in the TxLinux kernel, improving the performance of the Modified
Andrew Benchmark by 55% over Linux.

The paper also presents the first detailed study of how the per-
formance of user-level transactional programs (from the STAMP
benchmarks) are influenced by factors outside of the transactional
memory system. The study includes data about the interaction of
transactional programs with the architecture, memory allocator,
and compiler. Because many factors influence the performance of
transactional programs, getting good performance from transac-
tions is more difficult than commonly appreciated.

I. INTRODUCTION

Transactional memory [11, 14] is a promising paradigm
to simplify concurrent programming. Transactions relieve the
programmer from worry about deadlock, making it easier to
code correctly. However, most real-life programs need to be
both correct and efficient, and the introduction of transactions to
an application can have negative, counterintuitive consequences
for performance. Based on several years’ experience working
with transactional memory, this paper analyzes a range of issues
that lead to performance problems in transactional applications,
with a focus on helping developers and applications transition
from using locks to transactions.

Designers of transactional memory systems make imple-
mentation decisions based on an implicit model of common-
case application behavior. For instance, TM designs often trade
faster commits for slower aborts, and as a result applications
with high-contention transactions can perform much worse than
with locking. In many cases, application data structures can
be reorganized to improve transactional performance, but these
opportunities are not necessarily obvious upon inspection of
the code. Thus, it is important for developers to have tools that
help them to diagnose and to correct performance problems.

To help developers characterize and tune the performance
of transactional programs, this paper develops and validates
Syncchar, or synchronization characterization, a formal model

of transactional memory performance and a tool based on the
model. The Syncchar model starts with a lock-based or trans-
actional parallel application and samples the sets of addresses
read and written during critical sections. It then builds a model
of the program’s execution that can predict the performance
of the application if it used transactions. The model has two
key metrics, data independence and conflict density of the
critical regions. Data independence measures the likelihood
that threads will access disjoint data. Conflict density measures
how many threads are likely to be involved in a data conflict
should one occur. Because most large-scale parallel applications
use locking, a key use for the Syncchar model is identifying
which applications could benefit from using transactions before
investing the engineering effort to make such a conversion.

The Syncchar model is approximate, but useful, both for the
critical regions that it predicts will be performance problems
and for those that it predicts will perform well. Program-
mers can focus time reorganizing code in critical regions
that will serialize when using transactions. Working with a
performance model helps programmers tune transactional per-
formance, which requires different intuitions from tuning lock-
based code. For instance, common lock-based programming
techniques, such as walking a linked list or incrementing a
shared counter inside a critical region, can reduce transactional
performance.

This paper also presents a case study of performance tuning
the TxLinux kernel [29, 31]. TxLinux is a version of the Linux
kernel converted to use hardware transactional memory. This
study demonstrates the often counterintuitive nature of tuning
transactional performance and how Syncchar analysis can help
focus the tuning effort.

Performance problems for transactional applications can also
arise from the interaction of the TM system with unrelated
portions of the system. For instance, compiler optimizations
that avoid branches on a deeply pipelined processor can dra-
matically increase the conflict rate for a critical region. These
issues are difficult for the application developer to anticipate
and to debug. Ultimately, these issues must be resolved with
better integration of the TM implementation with the rest of the
system stack, but the Syncchar tool can help developers assess
whether their code needs tuning or a performance problem is
attributable to system effects.

This paper is the first to present data on how the system
influences the performance of user-level transactional programs.
The paper discusses the effect of various factors on perfor-
mance, including the input size, architectural features, standard
libraries and the compiler.

This paper contributes the following:
1) A new analytic model that predicts how application per-

formance will scale with transactions.
2) Experimental validation of the analytic model, charac-

terizing the performance of workloads from the STAMP
benchmark suite [20] with an average error rate of 25%.

3) Detailed measurements and case studies of whole-system
HTM behavior, including architectural effects, the memory
allocator, and the compiler.

4) A case study of performance tuning the TxLinux kernel,
in which we improve the performance of the Modified An-
drew Benchmark at 8 CPUs by 55% relative to unmodified
Linux.

This paper describes the need for a transactional memory
performance prediction and tuning tool (Section II). The paper
then presents novel techniques and a tool for investigating
the potential of transactional memory, through measuring data
independence and conflict density of critical regions protected
by the same lock. (Section III). Next, the paper validates
the model with a set of microbenchmarks and the STAMP
benchmark suite (Section IV). The paper then presents detailed
measurements and case studies of system effects on transac-
tional memory performance (Section V). Finally, the paper
applies the methodology and tools to tune the performance of
the TxLinux kernel [29, 31] (Section VI). Section VII describes
implementation details of the Syncchar tool, Section VIII
presents related work, and Section IX concludes.

II. TUNING TRANSACTIONAL PERFORMANCE IS DIFFICULT

Understanding and tuning transactional performance requires
different skills and intuitions from tuning lock-based concurrent
code because the factors that influence performance are differ-
ent. Tuning the performance of lock-based programs generally
involves identifying highly contended locks and breaking them
down into smaller locks, or restructuring the data to avoid
synchronization (e.g., per-thread data structures and read-copy
update [19]). Tuning transactions, on the other hand, requires a
reduction in conflicting memory operations (concurrent trans-
actions writing the same data). Although there are some known
techniques for avoiding memory conflicts, the process can be
difficult and counterintuitive.

Many transactional memory implementations also have sub-
stantial limitations that complicate a conversion from locking
to transactions. For instance, HTM systems that use cache
coherence either require that the address set of a transaction
fit in the L1 cache or fall back on a software-based mutual
exclusion mechanism. TM systems also have difficulty isolating
and rolling back the effects of system calls inside of a trans-
action. While many transactional applications can work around
the limits of a TM implementation in practice, these issues can
make adoption of transactions more complicated than a rote
replacement of locks with atomic blocks.

Given these challenges to adopting transactional memory,
a predictive performance model such as Syncchar can help
developers assess whether a migration to transactional memory
is worth the investment. Syncchar is also useful as a standard

profiling tool for transactional applications, giving developers
insight into which code is most likely to become a scalability
bottleneck.

If performance of a converted system does not meet expecta-
tions, Syncchar can help assess whether the problem lies within
the application or the transactional memory implementation.
As we show in Section V, many parts of the overall computer
system can affect the performance of a transactional program.
The transactional memory programming community can also
benefit from a predictor of performance in developing standard
benchmarks for transactional memory implementations and
reasoning about the performance of a particular system.

A. Transaction tuning 6= lock tuning

A common optimization in lock-based programming is
caching attributes, such as the number of elements in a data
structure. Caching attributes saves work when they are needed,
and updating them introduces no synchronization overhead
under locking, since the lock protecting the data structure
is already held when the data structure is updated. With
transactional memory, however, multiple threads updating the
same memory location serialize concurrent execution. Cached
attributes can be particularly prone to becoming a bottleneck
because of the work wasted on a transaction restart. If updates
are made late in the critical section and if values are read early
in others, the work lost on a transaction restart increases further.

Splitting counters that cannot be eliminated into per-thread
counters avoids conflicts on counter writes, but introduces
conflicts on reads, as each CPU’s value must be read to provide
a correct sum. Per-thread counters thus work well if they are
updated more frequently than they are read, but are pointless
otherwise.

Linked lists are commonly used as a generic container
because they are simple to implement, have a low memory
overhead, and don’t have problems with resizing. Linked lists,
however, can be pathologically bad for transactional memory,
because each thread traverses the exact same pointer path inside
a critical region. Any pointer update will conflict with all
other critical regions that have walked further down the list,
despite the fact that concurrent execution of the operations is
semantically safe.

B. System effects

Transactional programs are influenced by the program input
size, hardware architecture, operating system, and sometimes
the memory allocator and the compiler. Each subsystem can
affect performance, and their interplay can also be significant.

For instance, the responsiveness of the operating system
scheduler can lead to load imbalance or failure to concurrently
schedule transactional threads. Poor scheduling can cause tra-
ditional transaction metrics, like restart rate, to improve despite
worsening execution time. Similarly, limitations of a hardware
system, such as overflowing the cache or taking a TLB miss,
can cause a transaction to restart and fall back on a slower
software path. These effects are often difficult to predict by
code inspection.

Despite a seemingly straightforward appearance, tuning the
memory access patterns of a transactional program can be sub-
tle and non-intuitive. Even simple rules, like splitting counters
shared by threads into per-thread counters, can be pointless or
counterproductive when applied by rote. In a large, complicated
system, programmers will need tools like Syncchar to identify
where their tuning efforts are best spent.

III. THE SYNCCHAR MODEL

The Syncchar model formalizes the intuition that transac-
tional performance is primarily determined by the number of
conflicting transactions, and provides the basis for the Syncchar
performance tuning tool. This section explains the intuitions
behind the Syncchar model and provides a rigorous treatment
of how the model predicts transactional performance based on
sampling the address sets of dynamic critical regions from a
parallel execution.

A. Syncchar approach

Assessing the likelihood that dynamic instances of critical
regions will conflict is at the heart of the Syncchar approach.
The performance scalability of a transactional memory program
hinges on the number of critical sections that can execute
concurrently.

Transactional memory systems generally rely on conflict
serializability as their safety condition, implemented as an
abstract form of two-phase locking [30]. We call the set of
addresses read during an instance of a critical section the read
set, the set of addresses written the write set, and the union of
read and write set the address set. For critical sections A and
B, A conflicts with B if: AW ∩ (BR ∪ BW) 6= ∅. Informally,
conflict serializability says that the write set of one critical
region must be disjoint from the other’s address set to guarantee
safety. Conflict serializability is efficient to compute so it is
used widely in transactional memory systems.

A group of critical region executions are data independent
if each write set is disjoint from the others’ address sets. If
critical regions concurrently modify the same data, or have
data conflicts1, the transactional memory system will serialize
execution of the critical sections. In such cases, transactional
memory can perform much worse than conservative locking
due to the overhead required to detect and to resolve conflicts.

Conflict density is a measure of how long the serial schedule
resulting from a conflict is likely to be. Assume a conflict
among N threads. In the best case, a single thread might write
a datum read by N − 1 other threads. This is a low density
conflict that produces a short serialized execution schedule
(N −1 readers commit, and then the writer). In the worst case,
each thread can write a datum written by each of the other
N −1 threads, yielding a high density conflict that necessitates
a completely sequential schedule (the threads must run serially,
one after the next).

Syncchar estimates the data independence and conflict den-
sity of critical regions by sampling their address sets. Syncchar

1We selected the term data conflicts over data dependence to avoid confusion
with other meanings.

samples address sets of critical regions that could potentially ex-
ecute concurrently using transactional memory and determines
which of them can conflict. This process, described in detail
below, is effectively an implementation of the safety property
of the TM system. Sampling incorporates the dynamic behavior
of the application and its potential data conflicts.

A similar model was developed by von Praun et al. [36],
which calculates the dependence density of an application and
broadly categorizes tasks within a program as low, medium,
and high concurrency. Dependence density is essentially an
aggregation of data independence and conflict density; our
experience shows that this decomposition provides valuable
insight into performance debugging. Syncchar closes the loop
by making more concrete performance predictions (Section IV),
and providing insights into performance tuning applications
(Section VI). Section VIII provides additional comparison
between these papers.

B. Data independence

Data independence provides a high-level profile of the like-
lihood that a set of critical regions will conflict. The data inde-
pendence of a lock, In, is formally defined as the mean number
of threads that will not conflict when n threads are concurrently
executing critical sections protected by the same lock. Data
independence is a function of the number of threads that can
execute concurrently, and not a simple mean. Intuitively, one
expects the probability of conflict when only a single thread
is scheduled to be zero (data independence of 1), and the
likelihood of conflict to increase as the number of threads grows
(unless all threads access completely disjoint data).

Thus, when Syncchar calculates data independence for n
CPUs, it begins with a sample of critical regions from up to n
different threads. Syncchar then compares each address set in
the sample to all other address sets in the sample, determining
which threads are involved in a conflict Cn and which are not.
It keeps a running mean of the number of data independent
threads:

In = n− |Cn|

C. Conflict density

The key metric in the Syncchar model is the density of the
conflicts. A set of critical regions with high conflict density will
be prone to conflicts that involve many threads and form a long
serial schedule, whereas low density conflicts can be resolved
more quickly.

If one thinks of conflicts as forming a graph, with critical
regions as nodes and conflicts as edges, the density of the
conflict is the number of edges per node. Intuitively, if ev-
ery transaction conflicts with every other, one expects them
to execute sequentially, which means lower performance for
transactional memory. On the other hand, if for example, one
thread writes a memory location read by 31 other threads, all
readers should complete once the writer completes, resulting in
a performance gain that is commonly experienced in practice.
This scenario would have a star topology if represented as a
graph; removing the most connected node causes all others

to become disconnected (and able to proceed concurrently).
Hence, modeling this phenomenon is crucial to the accuracy of
predicting performance.

Syncchar calculates the conflict density of a sample of
address sets as follows. For each address set in Cn, we measure
the number of conflicts with other address sets in Cn and divide
it by (|Cn| − 1). The sum of each of these terms is the density
(Dn). Formally, this is expressed as

Dn =
∑

x∈Cn

∑
y∈{Cn−x} conflicts(x, y)

|Cn − x|

where conflicts(x, y) evaluates to 1 if address sets x and y
can conflict and 0 otherwise. In the case where all conflicting
address sets conflict with all others, the density equals the size
of the conflicts (Dn == |Cn|). In the star topology case, Dn

should equal 2.

D. Predicting transactional performance

The intuition behind our approach to predicting transactional
performance is that performance will be limited by the serial
schedule transactions must form to ensure correctness. In the
Syncchar model, this is the conflict density. In the common
case, the speedup of n threads concurrently executing a set of
transactions is expressed as n

max(Dn,1) .
When used with a lock-based parallel program, Syncchar

tracks both the acquisition time (acq) for a lock and the length
of a critical region after the lock is acquired (held), as well as
unrelated cycles other. According to Amdahl’s law, the overall
speedup obtained from concurrent execution of a critical section
is constrained by the amount of time spent in that section.
Thus, the speedup term above is applied only to the cycles
spent acquiring or holding a lock, leaving the unrelated cycles
(other) unaffected by transaction behavior. Formally, then, our
calculation becomes:

Execution Time =
(acq + held) ∗max(Dn, 1)

n
+ other

E. Limitations

Like any model, Syncchar makes certain simplifying as-
sumptions that balance complexity against accuracy. Bobba
et al. [4] provide an analysis of performance pathologies
for various hardware transactional memory designs. In our
experience working with an eager/eager HTM implementation,
the most common deviation from the Syncchar model is that
HTM can perform substantially worse than locking under high
contention. This can be attributed to a number of factors,
including restart costs, suboptimal back-off policy, and bus
contention. Ideally, when a transaction is restarted to resolve
a conflict, it will retry execution as soon as the winner of
the conflict commits. In an HTM with a high restart cost or a
high back-off, there may be a period of needless latency after
the winner commits and before the losing transaction resumes,
lowering transaction throughput. In the worst case, this can lead
to a conflict with a new transaction. On the other end of the
spectrum, a back-off policy that retries too quickly can increase
contention for cache lines and the memory bus, degrading

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

Lock
Tx
Syncchar

% Conflict

Ex
ec

ut
io

n
Ti

m
e

(s
)

Fig. 1. Performance of locks vs. transactions for a microbenchmark over a
range of probabilities of conflict. The Syncchar line illustrates how the model
loses prediction precision, but correctly identifies the performance trend at high
contention due to implementation-specific effects in the HTM.

system performance. A goal of our model is generality, so we
have avoided including implementation-specific parameters in
our model, as these contention pathologies can vary widely
across HTM implementations.

Figure 1 shows the execution time of a simple microbench-
mark at 8 CPUs, where critical regions write to a shared
variable with a configurable probability, with the probability
ranging from 0 to 100. The Tx line crosses the Lock line
between a probability of 80 and 90. This leads to deviation
in the accuracy of the Syncchar model beginning at about 60%
probability of dense conflicts. Syncchar correctly identifies that
transactions will give little to no performance improvement as
contention increases, but it cannot predict how poorly a given
HTM will perform.

The Syncchar model might also underestimate performance.
An application that has a freqently executed critical region
that is also highly data independent will have excellent TM
performance, but might experience lock contention. Threads
using locks mutually exclude even if a critical region is data
independent. In such a case, a more accurate prediction may
be realized by dropping the acq cycles and only applying the
speedup term to the held cycles. Rather than apply heuristic
weights to the acq cycles, we leave the issue for future work
and use a more approximate prediction.

IV. MODEL VALIDATION

In this section we validate the Syncchar model by implement-
ing it as a module for Virtutech Simics [17] and comparing
the predicted performance with transactions to the measured
performance on an HTM model. We validate the Syncchar
model against seven benchmarks from STAMP version 0.9.9,
listed with input parameters in Table I. All experiments in this
and the following sections are performed modeling 8, 16, and
32 1GHz, x86 processors. As Simics supports only a fixed IPC,

bayes Learns a randomly generated bayesian network.
-v32 -r4096 -n5 -p30 -s1 -i2 -e4

genome Reconstructs a larger gene sequence from segments of the gene.
-g16384 -s48 -n4194304

intruder Emulates a network intrusion detection system; transactionalizes
the packet capture and reassembly phases.
-a10 -l32 -n65216 -s1

kmeans Implements the K-means clustering technique.
-m40 -n40 -t0.0009 -i
random-n65536-d32-c16.txt

ssca2 Scalable Synthetic Compact Applications 2, kernel 1. Constructs
a graph data structure using adjacency and auxiliary arrays.
-s17 -i1.0 -u1.0 -l3 -p3

vacation Implements a travel reservation system. Transactions protect
updates to a local database implemented with a red-black tree.
-n4 -q60 -r1048576 -u90 -t1048576

yada Ruppert’s algorithm for Delaunay mesh refinement, similar to
Kulkarni et al. [13].
-a20 -i ttimeu10000.2

TABLE I
DESCRIPTION OF THE BENCHMARKS USED IN SECTIONS IV AND V, FROM
THE STAMP BENCHMARK SUITE [20]. WE INCLUDE OUR CUSTOM INPUT

PARAMETERS FOR REFERENCE, AS WE COMPARE WITH THE DEFAULT
PARAMETERS IN SECTION V.

the simulations used an IPC of 1, which is a reasonable choice
for a moderate superscalar implementation. Each processor has
a 32 KB, 4-way set associative private L1 cache with 64 byte
lines and an access time of one cycle. L2 caches are also
private with 64 byte lines. Each L2 cache is 4MB, 8-way set
associative. L2 cache accesses cost 16 cycles, and are kept
coherent using a transaction-aware MESI snooping protocol.
Our coherence model is implemented by the Simics txcache
module [32] . Main memory is a single, shared 1 GB, with
an access time of 200 cycles. Each CPU has two 4-way set
associative, 64 entry TLB’s–one for instructions and one for
data.

All lock-based experiments run on Linux version 2.6.16.1.
We used the MetaTM hardware transactional memory model
and TxLinux version 2.6.16.1 for the transactional memory
experiments [29, 31]. Main memory access latency is pseudo-
randomly perturbed by 0-4 ns to get accurate performance
measurements for multi-threaded programs. Multi-threaded
programs are sensitive to scheduling, so several randomly
perturbed runs give a more accurate picture of performance,
as described by Alameldeen and Wood [1]. Measurements
presented are a mean of 4 simulated executions.

A. Predicting speedup for STAMP

We applied the Syncchar model to programs from the
STAMP transactional memory benchmark suite [20]. As we
will discuss further in Section V-C, we do not use the labyrinth
benchmark in any experiments due to a memory leak that we
could not resolve.

Table II shows the predicted and actual execution times of the
parallel phases of these benchmarks. The measured exeuction
times are the mean of four runs, and the standard deviations
are all within 5% of the mean, except for bayes, which has
a variable number of transactions and standard deviations as

Workload Tx Syncchar % Err DI CD
bayes 8 CPU - - - - -

16 CPU .29 .29 0 0.00 3.10
32 CPU .20 .15 25 0.21 3.39

genome 8 CPU 1.35 1.11 19 5.89 0.01
16 CPU .79 .94 16 11.44 0.04
32 CPU .50 .84 40 28.40 0.13

intruder 8 CPU 1.06 1.52 43 2.20 2.72
16 CPU 1.33 1.63 22 2.60 4.51
32 CPU 1.67 1.72 3 2.68 8.45

kmeans 8 CPU 7.72 8.69 13 5.28 1.98
16 CPU 4.40 5.98 37 8.43 2.92
32 CPU 3.05 3.06 1 11.93 4.19

ssca2 8 CPU .64 .64 13 7.98 0.00
16 CPU .40 .36 13 15.94 0.00
32 CPU .27 .21 11 31.94 0.01

vacation 8 CPU 1.39 1.16 17 5.03 .90
16 CPU .72 .53 26 6.92 1.74
32 CPU .39 .21 46 7.70 3.18

yada 8 CPU .38 .39 26 4.76 2.51
16 CPU .21 .37 19 7.94 4.71
32 CPU .15 .37 153 15.44 9.43

TABLE II
THE EXECUTION TIME IN SECONDS FOR THE STAMP BENCHMARKS IN

SECONDS (LABELED TX), THE PROJECTED EXECUTION TIME IN SECONDS,
LABELED SYNCCHAR, AND ACCURACY (% ERROR). DI IS THE DATA

INDEPENDENCE VALUE FOR THE BENCHMARK AND CD IS THE CONFLICT
DENSITY. 8 CPU BAYES DATA WAS NOT AVAILABLE AT THE TIME OF

SUBMISSION.

high as 23% of execution time. The geometric mean error in
our predictions across all benchmarks is 25%. Syncchar tracks
the scalability trends very closely, both for high-contention
workloads that have poor scalability, like intruder, and for low-
contention workloads that have good scalability, like kmeans.
Syncchar’s precision decreases as the benchmarks become very
short, particularly for benchmarks that run for .3 seconds or
less. In the worst cases, Syncchar predicts the scaling trends
offset by a factor of 40-153%.

Data independence and conflict density prove to be in-
teresting metrics, with widely varying values across STAMP
applications. Ssca2 is highly data independent, while the high-
contention intruder is not. Bayes has very light conflict density
while yada’s conflicts are quite dense, with an average of nine
densely conflicting threads per transactional conflict.

Figure 2 shows the projected speedup of a representative
sample of benchmarks, broken down into the portion at-
tributable to data independence and the portion attributable to
low conflict density. The percent of the speedup attributable
to data independence is the same as the fraction of critical
regions that do not conflict, and the rest is attributable to low
conflict density. The projection in Figure 2 for ssca2, at one
end of the spectrum, is entirely due to data independence. Like
many transactional benchmarks, ssca2’s critical regions rarely
conflict, yielding good scalability and a substantial speedup
over locking. On the other extreme, nearly every critical section
in bayes is likely to conflict at least once, yet the measured
speedup is still substantial because relatively few threads are
involved in each conflict. Low conflict density is the key to
bayes’ scalability. Similarly, the kmeans benchmark has high

8 16 32 8 16 32 8 16 32 8 16 32

Pr
oj

ec
te

d
Sp

ee
du

p

0

2

4

6

8

10

Workload
intruder kmeans bayes ssca2

Data
Independence
Conflict
Density

Fig. 2. The projected speedups of selected benchmarks using transactions
versus locking, decomposed into the portion attributable to data independence
and conflict density.

data independence at moderate CPU counts, but increasingly
relies on non-dense conflicts for its performance improvement
at higher CPU counts. The kmeans benchmark shows a reason-
able mix of both data independence and non-dense conflicts,
which we expect to be the case with realistic workloads.

These experiments show that the Syncchar model strikes a
good balance between accuracy and complexity. While there
are outliers in the model’s predictions, most are off by 26% or
less, and all capture the scaling trends of the workload. These
performance estimates can help the programmer understand a
transactional program’s performance.

B. Scheduling model and sampling

Syncchar measures data independence and conflict density by
checking for conflicts between critical regions that are likely
to be scheduled concurrently. This Subsection describes how
Syncchar samples critical regions to detect conflicts. The Sync-
char approach respects the schedule of the original execution,
but generalizes it significantly to simplify the model.

Syncchar records the address sets of critical regions within a
sliding time window. After Syncchar has seen a certain number
of critical regions from the same lock, it samples the desired
number of critical regions and measures data independence
and conflict density as if those critical regions were scheduled
together. In our experiments, the sliding window consists of 512
critical regions, a value selected based on experimentation with
different sizes. In selecting address sets to compare, Syncchar
is careful to select only one address set per process. After
calculating data independence and conflict density, the recorded
address sets are discarded.

Limiting the number of address sets that Syncchar can
consider concurrently captures many likely execution schedules
with a simple concurrency model and implementation. For
instance, a newly forked thread cannot execute concurrently
with critical region executions that occurred before its creation.

Data Independence
Workload 10% %Err 25% %Err 100%

intruder 8 2.71 23 2.47 12 2.20
16 2.95 13 2.73 5 2.60
32 2.39 11 2.48 4 2.68

kmeans 8 5.37 2 5.34 1 5.28
16 8.51 1 8.47 0 8.43
32 11.95 0 11.95 0 11.93

ssca2 8 7.98 0 7.98 0 7.98
16 15.92 0 15.94 0 15.94
32 31.96 0 31.96 0 31.94

yada 8 4.08 14 4.52 5 4.76
16 8.33 5 7.52 5 7.94
32 16.22 5 15.42 0 15.44

Conflict Density
Workload 10% %Err 25% %Err 100%

intruder 8 2.71 0 2.73 0 2.72
16 4.62 2 4.62 2 4.51
32 8.66 2 8.67 2 8.45

kmeans 8 1.91 4 1.93 3 1.98
16 2.99 2 2.94 1 2.92
32 4.23 1 4.22 1 4.19

ssca2 8 0.00 0 0.00 0 0.00
16 0.00 0 0.00 0 0.00
32 0.01 0 0.01 0 0.01

yada 8 4.08 63 2.71 8 2.51
16 4.72 0 5.09 8 4.71
32 8.69 8 9.08 4 9.43

TABLE III
SENSITIVITY OF DATA INDEPENDENCE AND CONFLICT DENSITY TO

DIFFERENT SAMPLING RATES (10%, 25% AND 100%).

Syncchar’s sliding window reduces comparisons between criti-
cal regions that cannot be scheduled concurrently due to some
other synchronization mechanism, such as a join after a fork,
without having an exhaustive scheduling model.

Syncchar samples address sets to reduce the number of
address sets recorded, improving the efficiency of the tool. In
our previous experiments, we used a 100% sampling rate for
the highest fidelity data. Table III shows the data independence
and conflict density measurements at a sampling rate of 10%,
25%, and 100%. A representative sample of benchmarks was
selected; others were omitted for space. At 25%, measurements
are within 8% of the exhaustive measurement. While there are
some outliers at 10% sampling rate, the result is within 15%
of exhaustive measurement for most benchmarks. Syncchar’s
insensitivity to sampling indicates that the algorithms are prac-
tical for resource-constrained systems.

V. SYSTEM INFLUENCE ON TRANSACTION PERFORMANCE

In situations where a transactional application ought to
perform well and does not, the problem may be poor interaction
with the full system and the transactional memory implementa-
tion. This section analyzes situations where the system effects
transactional performance of user-level programs, using 7 of
the STAMP benchmark suite as a case study.

A. Input size

Table IV compares the speedup for STAMP benchmarks
for different input sizes. Because detailed HTM simulation
infrastructures tend to be slow, the STAMP benchmarks are

Workload 8 CPU 16 CPU 32 CPU
bayes sim 3.9 3.9 3.5

big 3.3 3.0 4.3
genome sim 1.3 1.3 1.1

big 7.3 14.5 26.7
intruder sim 1.4 1.4 1.2

big 2.4 1.9 1.5
kmeans sim 5.1 5.0 5.5

big 7.5 13.0 18.9
ssca2 sim 0.9 1.0 1.2

big 2.3 3.8 5.5
vacation sim 1.1 1.4 1.4

big 7.0 12.1 18.9
yada sim 2.8 3.5 3.9

big 3.0 4.8 7.0

TABLE IV
THE SPEEDUP FOR THE PARALLEL PHASE OF A SELECTION OF STAMP
BENCHMARKS RELATIVE TO 1 CPU WITH THE STANDARD SIMULATOR

INPUTS AND BIG INPUTS.

distributed with simulator inputs, which are much smaller.
Simulator inputs are much smaller than the kinds of inputs
for which the programs were designed.

As the table makes clear, the simulator inputs are too small
to show accurate scaling trends. For example, performance
for genome’s simulator inputs does not scale at all for 32
CPUs while our larger inputs scale by 26×. Ahmdahl’s law [2]
explains the problem. Even though the STAMP benchmarks
only measure performance during the parallel parts of the code,
the parallel section still includes serial setup. Some of the
setup is implicit; for example, the OS must schedule all of the
threads before they all execute. Because the parallel section is
so short, the performance scaling of the simulator inputs does
not reflect scaling on more realistic inputs. Also, the overhead
of synchronizing at a barrier towards the end of the benchmark
grows with higher processor counts.

While benchmark size and startup effects are a known
problem for simulation [25], they continue to impede accurate
measurement. We note that researchers can compensate for the
brevity of the simulator inputs and still accurately calculate the
gains in performance. Authors generally omit the details of how
speedup curves are generated, so we could not verify that any
particular methodology for measuring simulator inputs matches
the scaling trends on non-simulator inputs. Unless otherwise
noted, all STAMP data in this paper uses the “Big” inputs,
listed in Table I.

Table VI shows detailed breakdowns of the simulator inputs
and our resized inputs. The most important result from the table
is that common transactional metrics, like restart rate and aver-
age backoff, generally are a poor indicator of execution time.
For instance, execution time and restart rate are correlated as
CPU counts increase for intruder and bayes with the simulator
inputs, but are inversely correlated for yada and vacation. This
is appreciated by the transactional memory community, but the
lack of good performance indicators is a serious problem for
developers who must performance-tune transactional programs.
Simple event counters or runtime statistics provide insufficient
data on which to base performance tuning decisions.

Workload TLB in TX TX that Miss Miss/TX
bayes 8 1,005,978 1,301 79.48% 612

16 1,350,564 979 69.30% 908
32 800,294 752 56.59% 594

genome 8 44,300,488 1,170,001 99.15% 37
16 45,963,325 1,169,923 99.15% 38
32 52,167,445 1,169,967 99.15% 44

intruder 8 9,151,084 785,974 49.53% 5
16 10,800,831 936,367 58.96% 6
32 12,089,317 854,040 53.80% 8

kmeans 8 94,684 74,317 1.44% 0
16 131,538 95,272 1.81% 0
32 158,377 111,672 1.92% 0

ssca2 8 4,437,694 1,416,004 99.81% 3
16 4,435,489 1,415,954 99.80% 3
32 4,438,800 1,416,070 99.81% 3

vacation 8 55,804,649 1,048,576 100.00% 53
16 59,479,544 1,048,576 100.00% 56
32 70,203,295 1,048,576 100.00% 66

yada 8 412,759 39,966 62.72% 7
16 446,156 42,194 65.00% 7
32 493,853 43,563 66.16% 8

TABLE V
TOTAL TLB MISSES IN TRANSACTIONS FOR OUR BENCHMARKS AT 8, 16,

AND 32 CPUS, AND THE NUMBER AND PERCENT OF TRANSACTIONS THAT
INCUR AT LEAST ONE TLB MISS OVER THE COURSE OF THEIR EXECUTION.

Simply reducing restarts or backoff cycles might not affect
performance. The actual dynamics are much more complicated.
For instance, it might be more important to reduce the latency
of the critical path of the computation than to reduce the
restarts that occur off the critical path. The complexity of tuning
transactional performance motivated us to develop the Syncchar
model.

The table also shows that the idle time for some of the
benchmarks is high, and noticeably higher for the simulator
inputs. Load imbalance significantly affects the simulator in-
puts, causing unrealistic amounts of idle time. For instance,
kmeans with big inputs has only 1% idle time at 32 processors,
but it has 52% idle time for the simulated inputs. While the
STAMP benchmarks are designed to minimize system time,
several of them still spend up to 10% of their execution time
in the operating system, mostly in memory management and
page fault handling routines.

B. TLB Misses

We measure TLB miss rates within transactions in Table V.
TLB misses are very common within transactions. In fact, for
almost every run of genome, ssca2 and vacation on big inputs,
over 88% of transactions take at least one TLB miss. The TLB
miss rates on the simulator inputs are generally lower because
these inputs touch so little data that they do not establish the
steady-state TLB miss rate of the application. Only for kmeans
does the simulator TLB miss rate match the big inputs. It has
only 3 brief critical regions.

Knowing that TLB misses will be common in transactional
programs is important for hardware designers. The Sun Rock
processor [6] is reported to support HTM primitives, but it will
not tolerate TLB misses during a transaction. Kmeans is a good
fit for designs like the Sun Rock because it has a low TLB

Workload Big Sim
total U/S/I Restart % Back total U/S/I Restart % Back

bayes 8cpu .288 55 9 34 7.85 77,310 .016 46 3 49 3.66 877
16cpu .289 30 4 65 12.61 96,270 .016 25 4 69 6.16 4,344
32cpu .223 14 2 83 15.85 62,373 .018 14 2 83 9.90 4,093

genome 8cpu 1.387 91 1 8 .30 0 .013 25 12 61 .72 13
16cpu .722 89 1 10 .00 1 .013 15 9 75 1.09 10
32cpu .387 88 1 12 .00 0 .016 8 10 81 1.70 13

intruder 8cpu 1.063 98 1 0 42.51 134 .016 86 0 12 53.88 922
16cpu 1.339 99 0 0 47.96 1,038 .017 76 0 23 63.68 2,500
32cpu 1.668 99 0 0 46.73 1,985 .019 78 0 21 70.46 8,647

kmeans 8cpu 7.716 99 0 0 2.01 5 .012 90 0 9 6.04 35
16cpu 4.404 99 0 0 10.05 47 .012 67 1 30 11.83 1,219
32cpu 3.046 98 0 1 20.70 245 .011 44 3 52 16.24 1,706

ssca2 8cpu .638 83 7 9 .00 0 .026 60 6 33 .06 0
16cpu .390 77 5 17 .00 0 .024 35 7 56 .09 0
32cpu .266 67 4 28 .01 0 .021 28 6 64 .20 8

vacation 8cpu 1.637 98 1 1 20.62 28 .012 52 0 47 14.24 57
16cpu .786 98 1 1 37.22 67 .013 45 1 52 22.61 741
32cpu .506 98 1 2 57.24 170 .009 38 1 60 36.62 1,156

yada 8cpu .347 88 10 1 14.00 3,859 .029 87 2 9 15.87 3,340
16cpu .219 90 7 1 18.97 4,645 .023 82 1 15 17.81 4,408
32cpu .152 91 5 2 27.38 5,881 .021 79 0 19 20.17 7,523

TABLE VI
THE EXECUTION TIME (TOTAL) FOR SELECT STAMP BENCHMARKS USING BIG AND SIMULATED INPUTS, BROKEN DOWN INTO USER, SYSTEM, AND IDLE

TIME (U/S/I), RESTART RATE (RESTART %) , AND MEAN BACKOFF CYCLES (BACK).

miss rate, none of its three critical regions make function calls,
and only one critical region contains any control flow at all
(a loop). It is unknown if Azul Systems’ HTM can tolerate
a TLB miss [5]. Architectures with a software reloaded TLB
would likely require the TLB load sequence to run outside the
context of the current transaction. Avoiding an abort of the
current transaction for a TLB miss on these architectures might
be challenging.

C. Memory allocation

Performing system calls, including memory allocation,
within a transaction can violate isolation. While most memory
allocators are mostly implemented at user level, they sometimes
need to make system calls to get more memory from the OS
(either mmap or sbrk), and they might make other system
calls. This problem is well known [37, 39], and there are several
ways to allow system calls within transactions, including open
nesting [21, 22] and transactional pause [37, 39].

The STAMP benchmarks allocate memory and are not
written with any special hooks to deal with allocation. A
transaction can call the memory allocator, which calls the OS
for more memory. Such a transaction can restart many times,
leaking memory if there are no hooks for compensating actions
on transaction restart. The labyrinth benchmark is missing
from this paper because it pathologically leaks and cannot
complete, and we have experienced pathological memory leaks
in genome.

Surprisingly, memory allocation on a complete Linux en-
vironment can actually cause deadlock. Recent versions of
glibc use a blocking lock to protect the memory allocator’s
data structures. This lock is implemented using the futex()
system call [7], which can block the current thread until the
lock is released. When a process releases a futex that has

other threads waiting on it, it must trap into the kernel to
notify the waiters. In the context of a hardware transaction, a
transactional process can acquire the lock, a second can block
on the lock, and then the transaction holding the lock restarts.
The hardware releases the lock variable, but does not notify the
kernel of the change and blocked threads can sleep indefinitely,
effectively deadlocking the application. Many standard system
libraries are written to be threadsafe and will still use locks,
condition variables, and other synchronization mechanisms in
a transactional memory application, potentially causing adverse
effects.

We discovered this deadlock behavior in the vacation bench-
mark, which often allocates memory within transactions to
insert a new node into its red-black tree. We work around
the problem by conservatively preallocating all the memory a
transaction might need before beginning a transaction. This ad
hoc solution will not apply to general-purpose programming,
especially in the presence of composing transactions with
standard library routines. Calling standard libraries and system
calls, such as futex, within a transaction will likely require
a combination of new standard libraries [35], OS support [28],
or a TM implementation-specific solution like making a single
transaction non-speculative [3, 8, 12].

D. Compiler effects

A final challenge for optimizing transactional code is com-
piler optimizations for deeply pipelined machines. Figure 3
illustrates a simple conditional statement the programmer would
expect to reduce conflicting accesses to a shared variable.
Yet, the code generated by gcc always reads the value from
memory and always writes it back. It only uses the condition
to determine whether to update the register before writing it
back. The compiler is trying to avoid branching around the

if(a < threshold)
shared_variable = new_value;

;; edx holds a, 0xc03e6008 holds threshold
;; eax holds new_value, 0xc03e600c holds shared_variable

cmp 0xc03e6008,%edx ;; compare a and threshold
cmovge 0xc03e600c,%eax ;; conditionally load old value
mov %eax,0xc03e600c ;; unconditionally store to

;; shared_variable

Fig. 3. A simple code sequence and the annotated x86 assembly produced
by gcc.

bonnie++ Simulates file system bottleneck activity on Squid and INN
servers stressing create/stat/unlink. 32 instances of:
bonnie++ -d /var/local -n 1

MAB File system benchmark simulating a software development
workload[23]. Runs one instance per processor of the Modified
Andrew Benchmark, without the compile phase.

TABLE VII
PARALLEL APPLICATIONS USED TO EXERCISE THE CONCURRENCY IN

LINUX AND TXLINUX.

load and store, which makes sense on a superscalar platform.
On a hardware transactional memory system, however, the
performance lost to a coherence conflict is much larger than
that lost to a mispredicted branch.

For a critical section such as the one above, the Syncchar tool
identifies it as having no data independence and flags the shared
variable as a contention hot-spot. Counterintuitive results such
as these hint to the programmer that the code generated by the
compiler should be inspected.

VI. SYNCCHAR AS A TUNING TOOL

In addition to predicting the performance of a transactional
memory system, the Syncchar model can provide clues as to
which critical sections are likely to have performance problems.
This section demonstrates the utility of Syncchar for tuning
transactional performance, using the (Tx)Linux 2.6.16 kernel
as a case study.

A. Tuning features

Syncchar provides a number of useful metrics for the trans-
actional memory developer. Data independence and conflict
density give the developer an indication of how much par-
allelism they can expect from the code. Syncchar reports
the distribution of conflicting addresses in a critical region,
allowing the developer to identify contention hot-spots.

Syncchar also provides statistics on the workset size as
illustrated in Table VIII, which can help developers identify
critical regions that are likely to overflow the cache in a
coherence-based HTM. Finally Syncchar provides traditional
profiling metrics, such as the most frequently executed critical
region and the most contended critical regions.

1) Asymmetric Conflicts: Conflicts between transactional
and non-transactional threads are known as asymmetric con-
flicts [29] and can introduce performance pathologies in trans-
actional applications. In resolving asymmetric conflicts, the

Lock j state lock j list lock
0-19% 420 242
20-39% 2 0
40-59% 0 0
60-79% 0 0
80-99% 0 0
100% 0 0
Avg. Workset Size 13 33
Total Conflicts Sampled 111,118 35,600

DI 1.03 1.15
CD 14.37 7.26
Asym 88% 92%

TABLE VIII
DISTRIBUTION OF CONFLICTING ADDRESSES FOR THE JOURNAL LOCKS, AS
WELL AS OTHER KEY SYNCCHAR METRICS. THE RANGE OF PERCENTAGES

SHOWS THE NUMBER OF WORKSET ADDRESSES INVOLVED IN THAT
PERCENTAGE OF CONFLICTS. SAMPLES ARE TAKEN FROM BONNIE++ AT 16

CPUS. THE AVERAGE WORKSET SIZE IS IN WORDS. DI IS DATA
INDEPENDENCE, CD IS CONFLICT DENSITY, AND ASYM IS THE

PROBABILITY OF BEING INVOLVED IN AN ASYMMETRIC CONFLICT.

transaction must always restart because a non-transactional
thread cannot be rolled back. In many TM implementations,
if non-transactional accesses occur faster than transactions can
commit, transactions are starved and the application can hang.

Performance problems caused by asymmetric conflicts are
difficult to diagnose and to resolve. Simple profiling can
indicate in which transaction the program is spending too much
time, but it cannot find the unrelated code that is starving the
transaction with asymmetric conflicts. Even TM researchers
with good intuition about transactional performance tend to
scrutinize writes, yet a variable that is only read in a transaction
can cause problems if it is frequently written outside of a
transaction.

Syncchar helps developers by indicating critical regions
and addresses that are prone to asymmetric conflicts. This is
implemented by tracking reads and writes outside of critical
regions and checking for conflicts with critical regions. For each
critical region, Syncchar reports the percentage of address sets
that conflict with the non-transactional address set, estimating
the probability of an asymmetric conflict. In the next Subsection
we use Syncchar to diagnose and to correct such a pathology
in TxLinux.

B. TxLinux case study

Rossbach et al. [31] report comparable performance for lock-
ing and transactions for the TxLinux kernel. Transactions do
not help performance because the locks in Linux 2.6 are already
fine-grained, highly tuned, and because several benchmarks
spend relatively little time in the kernel. The primary exception
was the bonnie++ filesystem benchmark, which shows severely
pathological behavior under transactions. We reproduced this
pathology and used simple program counter profiling to in-
dicate that most of the time was being spent in the ext3
journaling code, protected by the journal_t.j_state and
journal_t.j_list locks.

Workload TxLinux TxLinux-Opt Speedup
bonnie++ 8 HANG 1.55 -

16 HANG .98 -
32 HANG .54 -

MAB 8 .68 .48 1.4
16 .24 .13 1.8
32 .07 .07 1.0

TABLE IX
SYSTEM TIME IN SECONDS FOR TXLINUX WORKLOADS UNDER

UNMODIFIED TXLINUX AND OUR OPTIMIZED VERSION OF TXLINUX
(TXLINUX-OPT), AT 8, 16, AND 32 CPUS (LOWER IS BETTER). SPEEDUP IS

TXLINUX-OPT RELATIVE TO THE TXLINUX BASELINE (HIGHER IS
BETTER).

We then used Syncchar to provide additional insight into the
problem by sampling these critical regions by running bonnie++
on unmodified Linux. Table VIII shows the distribution of
conflicting addresses for these journal locks. These critical
regions tend to be short—13 and 33 words in the working
set, respectively. They have relatively high conflict density,
indicating that there is temporal locality in the data accessed
within these critical regions, but no one “hotspot” address. This
matched our initial experience in auditing the journal code,
as we found no immediately obvious datum causing the high
transaction restarts.

The red flag Syncchar raised for these critical regions was
that they had a 92% probability of an asymmetric conflict. Upon
further review, we found an assertion in the code that a bit in
the buffer_head.b_state field is set. This bit is used as a
spinlock and always set before entering the critical regions that
were converted to transactions. Moreover, other bit fields in the
same byte are used by non-transactional tasks such as journal
writeback. Interestingly, these bits are not modified inside a
transaction, so the intuitive approach of looking for conflicting
writes inside a transaction is not enough. Developers need tools
to help find these sorts of bugs in a large code base.

We addressed the problem by converting the bit spinlock
to a cooperative transactional spinlock (cxspinlock) [31]. A
cxspinlock uses transactions optimistically, but can fall back
on locking to mutually exclude I/O. Cxspinlock acquisition
is arbitrated by the HTM contention manager, so locks and
transactions can fairly contend for a critical region. By using
cxspinlocks and separating this bit into its own word (or cache
line, depending on the HTM conflict granularity), we were able
to eliminate the asymmetric conflicts that were starving the
transaction.

C. Experimental results

To evaluate these optimizations, measurements of 8, 16, and
32 CPU systems were taken as described in Section IV. Because
TxLinux simply idles when left undisturbed, we need a set
of parallel applications to exercise the concurrency within the
TxLinux subsystems, such as the file system and memory allo-
cator. We used the full suite of 6 benchmarks from the TxLinux
paper [31] and verified that our optimizations did not introduce
any performance regressions. For the sake of space, we only
report the two benchmarks with improved performance, listed

CPUs
8 16 32

Sp
ee
du
p

0.5

1

1.5

Linux
TxLinux
TxLinux+opt

Fig. 4. Speedup of unmodified TxLinux and our optimized version of TxLinux
(TxLinux-Opt) over unmodified Linux for the MAB benchmark at 8, 16, and
32 CPUs (larger is better).

in Table VII. All other benchmarks performed identically to
unmodified TxLinux.

Table IX presents the time spent in the kernel for each
of these benchmarks on both unmodified TxLinux and our
optimized version, respectively. Kernel time is presented be-
cause our tuning efforts are for the kernel itself and cannot be
expected to improve the non-kernel portions of the execution
time. Further, this approach eliminates noise introduced by load
imbalance in the workloads.

We reproduced the same pathological behavior on the bonnie
benchmarks under TxLinux. After over a month of simulating
bonnie on TxLinux (compared with 1–3 days on average
for bonnie on unmodified Linux), the benchmarks had not
terminated, so we list the baseline TxLinux performance as
hung.

Our optimization allows bonnie to complete, and also im-
proves the performance of MAB. For other workloads, includ-
ing MAB at 32 CPUs, the journal locks did not affect execution
time substantially, and the performance remains flat. At this
CPU count the performance bottleneck shifts from the journal
spinlocks to other critical regions in the kernel. This demon-
strates that our optimizations do not introduce regressions or
other performance anomalies for other workloads.

The bit spinlock optimization also improves the performance
of TxLinux relative to unmodified Linux at 8 and 16 processors,
as shown in Figure 4. Tuning TxLinux 2.6 with programmer
intuition and simple profiling has yielded marginal (< 10%)
improvement over Linux, but Syncchar led us to the fix for the
bonnie++ pathology and sped up MAB by over 50%.

This case study indicates that tuning the performance of
transactional memory applications can be tricky and nonintu-
itive, as the cause for a given critical region dominating execu-
tion time can be in an entirely different part of the application.
Programmers facing this challenge will benefit from tools that
help them understand their system with quantitative rigor.

VII. IMPLEMENTATION DETAILS

This section describes key implementation details and fea-
tures of the Syncchar tool, which can be used to performance
tune applications as complex as the TxLinux kernel [31]
(Section VI).

The Syncchar prototype is a module for the Simics full-
system, execution-driven simulator [17] that generates output
that is post-processed. By implementing Syncchar in the ma-
chine simulator, it is able to measure user-level code and the
operating system. Nearly all instrumentation is performed using
simulator breakpoints, which are performance transparent and
minimally affect the execution behavior of the program being
tested.

The requirements of the Syncchar model are modest enough
that it could be implemented for user-level applications using
a binary instrumentation tool such as Pin [16], or in a virtual
machine monitor for kernel instrumentation on a live machine.

When tracking the address set of a critical region in lock-
based code, Syncchar ignores reads and writes to lock variables,
as locks would be removed in a transactional version of the
application. Similarly, because stack addresses are generally
private, Syncchar filters stack addresses to avoid conflicts due
to reuse of the same stack address in different activation frames.

Syncchar needs to know about dynamically allocated lock
variables. If an object containing a lock is freed and reallocated,
it is treated as a new lock. In our current implementation, this
information is communicated to Syncchar through annotations
to the lock initialization routines.

Many locking implementations, including spin locks, do not
ensure fairness and are more susceptible to load imbalance in
parallel programs than transactional memory, which can have
sophisticated contention management policies [33]. Syncchar
accounts for this effect in its predictions by discarding idle
cycles at the end of a benchmark when there is gross load
imbalance; in practice, one might use predictions with and
without these cycles to establish a range for the performance
prediction.

Finally, some spinlocks in the Linux kernel protect against
concurrent attempts to execute I/O operations, but do not
actually conflict on non-I/O memory addresses. When run on
the Linux kernel, Syncchar detects I/O operations, and marks
those critical regions as performing I/O. This annotation ensures
that these critical regions will not be incorrectly reported as
non-conflicting.

VIII. RELATED WORK

There is very little published about performance tuning
transactional programs. However, there is a large body of
work about tools used to debug and to performance tune lock-
based concurrent programs [9, 38]. These tools are similar to
Syncchar in that they use a runtime system to track locking and
data access patterns, but are different in their analysis goals.
The collected information is used to identify possible data race
conditions rather than data independence and conflict density.

In previous work [27], we introduce the definition of data
independent critical sections and a tool for measuring data

independence of critical regions. This paper substantially mod-
ifies the data independence metric to be more practical (both in
measurement and utility), introduces the new metric of conflict
density, and provides empirical evaluation of its application to
prediction and tuning.

Von Praun et al.[36] provide a definition of dependence
density that is similar to the aggregation of data independence
and conflict density under Syncchar. Von Praun focuses on
programs that apply similar operations to large data sets and
provides a coarse classification of the workloads. They do not
use the results of their model to predict speedups, and do not
report any experience using the result of their model to tune
the measured programs. Syncchar closes the loop by generating
and validating performance predictions from its model. Further,
decomposing data independence and conflict density provides
more insight into tuning the behavior of real-world applications
with irregular parallelism, such as the Linux kernel.

Heindl and Pokam [10] present a framework for analytical
performance modeling of STM implementations. The focus of
the work is on assessing the performance impact of certain STM
design decisions, such as lazy versus eager conflict detection or
version management. To this end, they make certain simplifying
assumptions about the general behavior of workloads, such as
all transactions are the same length and all data are equally
likely to cause conflicts (i.e., no contention “hotspots”). In
contrast, the Syncchar model is designed to help TM users un-
derstand if and how their particular workload deviates from the
common-case assumptions of the TM designer. For instance,
many workloads have data that create contention hotspots,
which may be tuned to improve performance.

Several papers [24, 30, 34] discuss transaction conflict be-
havior in the context of improving HTM implementations, but
to the best of our knowledge none of these papers provides
a formal model of transactional memory performance and no
prior work closes the loop by validating such a model against
measured performance.

When memory performance was an important issue in the
early 90’s, programmers needed tools like memspy [18] to rea-
son about performance problems related to memory behavior.
Now that parallel architectures are unavoidable, programmers
will need tools to assist in tuning the performance of opti-
mistically synchronized systems. Lev and Moir discuss the
necessity for and challenges of debugging tools for transac-
tional memory systems [15], and Zyulkyarov et al. introduce
debugging extensions for atomic blocks in C# and the Windows
Debugger [40]. This paper is distinguished by addressing per-
formance, whereas their work addresses correctness problems.
Perfumo et al. introduce a Haskell runtime with transactional
memory instrumentation support for performance profiling [26].
This work is complementary to the Syncchar model, which
provides limits that are not tied to specific schedules.

IX. CONCLUSION

This paper introduces Syncchar, a novel method and tool
for reasoning about the performance of transactional memory.
We have validated Syncchar’s performance predictions and

demonstrated its usefulness in guiding performance tuning on
the TxLinux kernel. This paper also presents a detailed char-
acterization of how the whole system, including architecture,
libraries, and compiler, can affect the performance of transac-
tional applications, often in a way that befuddles performance
tuning. We see Syncchar as one in an array of profiling and
debugging tools that must be developed to help application
developers leverage transactional memory more effectively.

X. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and Jeff
Napper for helpful comments on earlier versions of this paper.
We thank Owen Hofmann for help developing the Syncchar
tool. We also thank Virtutech AB for the Simics academic
license program. This research is supported by NSF CISE Re-
search Infrastructure Grant EIA-0303609, NSF Career Award
0644205, and the DARPA computer science study group.

REFERENCES

[1] A. Alameldeen and D. Wood. Variability in architectural
simulations of multi-threaded workloads. In HPCA, 2003.

[2] G. Amdahl. Validity of the single processor approach to
achieving large-scale computing capabilities. In AFIPS,
1967.

[3] C. Blundell, J. Devietti, E. Lewis, and M. M. K. Martin.
Making the fast case common and the uncommon case
simple in unbounded transactional memory. In ISCA,
2007.

[4] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill,
M. M. Swift, and D. A. Wood. Performance pathologies
in hardware transactional memory. ISCA, 2007.

[5] C. Click. http://blogs.azulsystems.com/cliff.
[6] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early

experiences with a commercial hardware transactional
memory implementation. ASPLOS, 2009.

[7] H. Franke, R. Russel, and M. Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in Linux. In Proceedings
of the Ottawa Linux Symposium, 2002.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional memory
coherence and consistency. In ISCA, page 102. IEEE
Computer Society, Jun 2004.

[9] J. Harrow. Runtime checking of multithreaded applica-
tions with visual threads. In SPIN, pages 331–342, 2000.

[10] A. Heindl and G. Pokam. An analytic framework for
performance modeling of software transactional memory.
Comput. Netw., 53(8):1202–1214, 2009.

[11] M. Herlihy and J. E. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA, May 1993.

[12] O. Hofmann, C. Rossbach, and E. Witchel. Maximum
benefit from a minimal HTM. In ASPLOS, 2009.

[13] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. P. Chew. Optimistic parallelism requires
abstractions. In PLDI, 2007.

[14] J. R. Larus and R. Rajwar. Transactional Memory.
Morgan & Claypool, 2006.

[15] Y. Lev and M. Moir. Debugging with transactional
memory. In TRANSACT, 2006.

[16] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

[17] P. Magnusson, M. Christianson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. In
IEEE Computer vol.35 no.2, Feb 2002.

[18] M. Martonosi, A. Gupta, and T. A. Anderson. Memspy:
Analyzing memory system bottlenecks in programs. In
SIGMETRICS, 1992.

[19] P. E. McKenney. Exploiting Deferred Destruction: An
Analysis of Read-Copy Update Techniques in Operating
System Kernels. PhD thesis, Oregon Health and Science
University, 2004.

[20] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for multi-
processing. In IISWC, 2008.

[21] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D.
Hill, B. Liblit, M. M. Swift, and D. A. Wood. Supporting
nested transactional memory in LogTM. In ASPLOS-XII.
2006.

[22] J. E. B. Moss. Nested Transactions: An Approach to Re-
liable Distributed Computing. PhD thesis, Massachusetts
Institute of Technology, 1981.

[23] J. K. Ousterhout. Why aren’t operating systems getting
faster as fast as hardware? In USENIX Summer, 1990.

[24] S. M. Pant and G. T. Byrd. Limited early value communi-
cation to improve performance of transactional memory.
In ICS, 2009.

[25] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood,
and B. Calder. Using SimPoint for accurate and efficient
simulation. In SIGMETRICS, 2003.

[26] C. Perfumo, N. Sonmez, A. Cristal, O. Unsal, M. Valero,
and T. Harris. Dissecting transactional executions in
Haskell. In TRANSACT, 2007.

[27] D. Porter, O. Hofmann, and E. Witchel. Is the optimism
in optimistic concurrency warranted? In HotOS, 2007.

[28] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn,
and E. Witchel. Operating system transactions. In SOSP,
2009.

[29] H. Ramadan, C. Rossbach, D. Porter, O. Hofmann,
A. Bhandari, and E. Witchel. MetaTM/TxLinux: Trans-
actional memory for an operating system. In ISCA, 2007.

[30] H. E. Ramadan, C. J. Rossbach, and E. Witchel.
Dependence-aware transactions for increased concurrency.
In MICRO, 2008.

[31] C. Rossbach, O. Hofmann, D. Porter, H. Ramadan,
A. Bhandari, and E. Witchel. TxLinux: Using and
managing transactional memory in an operating system.
In SOSP, 2007.

[32] C. J. Rossbach. Hardware Transactional Memory: A
Systems Perspective. PhD thesis, The University of Texas
at Austin, 2009.

[33] W. N. Scherer III and M. L. Scott. Advanced contention
management for dynamic software transactional memory.
In PODC, 2005.

[34] A. Shriraman and S. Dwarkadas. Refereeing conflicts in
hardware transactional memory. In ICS, 2009.

[35] H. Volos, A. J. Tack, N. Goyal, M. M. Swift, and A. Welc.
xCalls: Safe I/O in memory transactions. In EuroSys,
2009.

[36] C. von Praun, R. Bordawekar, and C. Cascaval. Model-
ing optimistic concurrency using quantitative dependence
analysis. In PPoPP, 2008.

[37] L. Yen, J. Bobba, M. Marty, K. E. Moore, H. Volos,
M. D. Hill, M. M. Swift, and D. A. Wood. LogTM-SE:
Decoupling hardware transactional memory from caches.
In HPC. Feb 2007.

[38] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: Efficient
detection of data race conditions via adaptive tracking. In
SOSP, 2005.

[39] C. Zilles and L. Baugh. Extending hardware transac-
tional memory to support non-busy waiting and non-
transactional actions. In TRANSACT, 2006.

[40] F. Zyulkyarov, T. Harris, O. S. Unsal, A. Cristal, and
M. Valero. Debugging programs that use atomic blocks
and transactional memory. PPoPP, 2010.

	Introduction
	Tuning transactional performance is difficult
	Transaction tuning = lock tuning
	System effects

	The Syncchar model
	Syncchar approach
	Data independence
	Conflict density
	Predicting transactional performance
	Limitations

	Model validation
	Predicting speedup for STAMP
	Scheduling model and sampling

	System Influence on Transaction Performance
	Input size
	TLB Misses
	Memory allocation
	Compiler effects

	Syncchar as a tuning tool
	Tuning features
	Asymmetric Conflicts

	TxLinux case study
	Experimental results

	Implementation Details
	Related work
	Conclusion
	Acknowledgements

