
Teaching Virtualization by Building a Hypervisor

Abhinand Palicherla
Tintri, Inc.

303 Ravendale Dr.
Mountain View, CA 94043
apalicherla@tintri.com

Tao Zhang
Department of Computer

Science
Stony Brook University
Stony Brook, NY 11794

zhtao@cs.stonybrook.edu

Donald E. Porter
Department of Computer

Science
Stony Brook University
Stony Brook, NY 11794

porter@cs.stonybrook.edu

ABSTRACT
Virtual machines (VMs) are an increasingly ubiquitous fea-
ture of modern computing, yet the interested student or pro-
fessional has limited resources to learn how VMs work. In
particular, there is a lack of “hands-on” exercises in con-
structing a virtual machine monitor (VMM, or hypervisor),
which are both simple enough to understand completely but
realistic enough to capture the practical challenges in using
this technology. This paper describes a set of assignments to
extend a small, pedagogical operating system (OS) to form
a hypervisor and host itself. This pedagogical hypervisor,
called HOSS, adds roughly 1,000 lines of code to the MIT
JOS source, and includes a set of guided exercises. Initial
results with HOSS in an upper-level virtualization course in-
dicate that students enjoyed the assignments and were able
to apply what they learned to solve different virtualization-
related problems. HOSS is publicly available.

Categories and Subject Descriptors
D.4.0 [Operating Systems]: General; K.3.2 [Computers
and Education]: Computer and Information Science Edu-
cation—Computer Science Education

General Terms
Design, Experimentation

Keywords
Operating Systems; Virtual Machines; Instructional Tools

1. INTRODUCTION
Virtual Machines (VMs) are an increasingly important

component of modern computing. VMs offer several attrac-
tive benefits, including security isolation, the ability to run
applications designed for different operating systems (OSes)
on the same hardware platform, and the ability to migrate
applications from one physical machine to another. As a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677254.

result, VMs have become the backbone of cloud comput-
ing, grown increasingly common on desktops, and are even
emerging as a way to separate business and personal appli-
cations and numbers on a single mobile phone [4, 14].

Unfortunately, there are very few tools available to help
students and instructors learn how virtualization works, es-
pecially “hands-on” exercises. A few OS textbooks have
added overviews of virtualization [29, 33], but there is very
little between these very high-level descriptions and the very
low-level details of the ISA programming manual, technical
research papers [7, 11] and other references [12, 30]. Al-
though open source hypervisors are widely used, Xen [7] is
hundreds of thousands of lines of code, and KVM is scattered
across 15 million lines of Linux source code. The interested
student lacks a “middle ground” environment that is sim-
ple enough to completely understand, but realistic enough
to appreciate the real-world challenges of working with this
technology.

This paper describes HOSS, a simple OS that can host
instances of itself as virtual machine guests. In the HOSS
exercises, students directly program Intel’s hardware virtu-
alization extensions (called VT-x) [34], create extended page
tables, handle hypercalls and other traps, as well as imple-
ment a paravirtual guest system. To build HOSS, we ex-
tended the MIT JOS [20] pedagogical OS. In both JOS and
HOSS, boilerplate code is provided, and students implement
the interesting components of the system. The provided
code is small enough to understand (about 14,000 LoC),
but structurally similar to much larger OS codebases, such
as Linux. HOSS adds roughly 1,000 LoC to JOS.

Initial experiences with HOSS in the classroom are pos-
itive. The HOSS assignment was initially assigned in a
new course on virtualization, including a mix of senior un-
dergraduate and graduate students. After completing the
HOSS assignments, students were able to complete an open-
ended final project that involved modifying a production
hypervisor. The HOSS assignments are publicly available
at http://www.cs.stonybrook.edu/~porter/hoss and so-
lutions are available to instructors upon request. Enhance-
ments and support for HOSS are ongoing (§6).

2. RELATED WORK
To our knowledge, HOSS is the first pedagogical hyper-

visor. In addition to JOS, a number of pedagogical OSes
have been developed and used [6, 10, 13, 19, 24, 27, 32], but
these OSes do not include exercises in hypervisor construc-
tion. This paper demonstrates that adding a hypervisor to
such a pedagogical OS is straightforward—adding roughly

one thousand lines of additional code. Northwestern has
a course which involves adding features to a research hy-
pervisor [16], but the coding assignment is an open-ended
project, not structured assignments implementing core hy-
pervisor features.

Lguest is perhaps closest to HOSS—a simple, but func-
tionally limited hypervisor for Linux [28]. Lguest is written
primarily to document and test Linux-internal interfaces for
writing a hosted hypervisor; KVM also uses these internal
interfaces. Lguest would be useful in the classroom as a
code review assignment, but it would be difficult to create
assignments that worked with core virtualization concepts
that did not amount to reimplementing existing code.

A number of OS educators have shifted to using real-world
OSes, such as Linux, in the classroom [3, 18, 23]. To our
knowledge, published experiences and exercises have not in-
troduced virtualization concepts. Andrus and Nieh [5] argue
for the use of Android in the OS classroom because it is an
increasingly ubiquitous technology with unique characteris-
tics; we believe this argument applies equally to hypervisors.

Finally, we note that several papers have been published
on the effectiveness of virtual machine platforms as class-
room infrastructure—scaling limited hardware to large class-
rooms, simplifying administrative tasks, and addressing other
classroom challenges [15, 21, 22, 25, 31]. HOSS helps stu-
dents learn how such useful technology works.

3. BACKGROUND
This section summarizes background on the JOS operat-

ing systems courseware, as well as concepts unique to virtual
machine monitors (VMMs, or hypervisors) compared to a
traditional OS kernel.

3.1 JOS
The JOS [20] operating system is written in C and assem-

bly, and runs on 32-bit x86 (PC) hardware. A completed
JOS solution is about 14,000 lines of C code and 600 lines
of assembly1. Over the course of 6 assignments, students
complete substantial portions of core system components,
including the memory manager, scheduler, file system, shell,
and network driver. In particular, JOS requires students to
program x86 hardware including configuring the page ta-
bles, context switching the CPU, handling interrupts, and
writing an e1000 network card driver.

The JOS architecture is best described as an exokernel [17],
wherein the OS kernel manages hardware and exports hard-
ware-like interfaces to the application. Unlike a monolithic
kernel, most familiar POSIX-style abstractions, such as file
descriptors or even fork and exec are implemented in an ap-
plication library OS. The only exception is the file system,
which runs as a shared, microkernel-style daemon.

An essential feature of JOS is that students develop in-
tuitions which apply to much larger OS code bases, such as
Linux or FreeBSD. Although JOS supports fewer architec-
tures and features than a production-quality OS, it retains a
similar kernel structure and requires students to write core
system components. JOS was developed at MIT, and has
been used at a number of universities, including Stanford,
Texas, UCLA, Washington, Harvard, and Stony Brook.

1We note that JOS also includes a 25,000 LoC user-level
socket library, but students do not need to understand this
code to complete the assignments.

Host OS Kernel

System Call
Table

Hypercall
Table

App

Process

Hardware
Page

Protection

App

Virtual Machine

Guest OS
SysCalls

HW
Emulator

Traps

Syscalls Hypercalls Priv. Inst.

Figure 1: Comparison of an application in a pro-
cess (left) to a virtual machine (right). Both exe-
cute in an isolated address space, implemented with
hardware page tables. The primary difference is the
ABI—system calls versus hypercalls and emulated
hardware. A host OS kernel can execute a mixture
of processes and VMs.

3.2 Hypervisor Implementation Techniques
Virtual machines are, in many respects, quite similar to

OS processes (illustrated in Figure 1). VMs execute in a
hardware-isolated virtual address space, and at a lower priv-
ilege level than the host OS kernel. The primary difference is
the application binary interface (ABI) exported by the host
OS kernel to the guest. The process ABI includes higher-
level abstractions, such as file descriptors, signals, and net-
work sockets, whereas a VM manipulates emulated hardware
abstractions, such as a virtual disk, CPU interrupts, and a
virtual network card. In other words, adding VM support to
a legacy OS, such as adding KVM to Linux, requires replac-
ing the system call table with a hypercall table, the ability
to trap accesses to privileged hardware, and a PC hardware
model, generally running as a separate process. As a result,
desktop and server OSes can run both traditional processes
and VMs (this is sometimes called a Type 2, or hosted hy-
pervisor); a Type 1 hypervisor, such as VMware ESX server
or Xen, runs on bare metal and only executes VMs.

We summarize three essential concepts specific to mod-
ern hypervisor implementations, which are not required to
understand a traditional OS kernel.

Trap-and-emulate. VMs run a potentially-unmodified
guest OS in a lower hardware privilege level (or ring in x86
parlance), yet include privileged instructions that directly
access hardware. Hypervisors must be able to trap each
of these privileged instructions, emulate its effect, and then
advance the CPU’s program counter transparently to the
guest OS. We note that, before the introduction of Intel’s
VT extensions [34], the x86 architecture did not trap on all
privileged instructions, but failed silently on some, rendering
it unvirtualizable. Thus, VMware Workstation and other
early hypervisors required binary translation techniques to
detect these instructions [11].

Once a privileged instruction is trapped, the instruction’s
effects must be emulated. For instance, sending a packet on
a virtual network card should ultimately result in a packet
being sent on the physical network (or to another VM within
a virtual network). As a result, most hypervisors also require

Guest Page Tables Host Page Tables (EPT/NPT)

0xf0010000

Guest Virt Guest Phys

0x10000

0x10000

Guest Phys Host Phys

Shadow Page Tables
Guest Virt Host Phys

0xab000

0xf0010000 0xab000

Figure 2: Both a guest and host OS include page ta-
bles, which translate virtual to physical addresses,
or the guest’s view of physical memory to the hosts’
view of physical memory. Newer hardware directly
traverses both page tables using extended, or nested
page tables (EPT/NPT). For older hardware with
only one level of paging, the hypervisor must con-
struct a shadow page table (bottom), that directly
translates guest virtual to host physical addresses.

models of common PC hardware, such as a widely-supported
network card, disk controller, and video device. KVM ob-
tains this from the qemu machine emulator [8], which runs
as a process on the host OS. VMware Workstation has a
similar process, called vmx.

Memory Translation. A VM runs in a virtual address
space, similar to a process, but then creates nested virtual
address spaces for each application. This creates a prob-
lem for CPUs that only export one level of page translation
hardware, requiring the hypervisor to combine two levels of
page translation into a single shadow page table for the hard-
ware to use. Shadow page tables are illustrated in Figure 2,
which directly map guest virtual addresses onto host phys-
ical addresses. Emulating paging hardware can be partic-
ularly expensive and complex because the hypervisor must
trap every write to the memory containing the guest OS’s
page tables, and then update the shadow page tables.

To reduce this complexity and improve performance, re-
cent Intel and AMD CPUs now support two levels of hard-
ware page tables [1], allowing the hypervisor and VM to
independently manage their own address translations. We
note that, even with two-level paging, running a hypervi-
sor inside of a VM will still require shadow paging (e.g., to
map three page tables onto two) [9]. Although conceptu-
ally similar, hypervisor-level page tables and CPU control
structures are not identical to traditional page tables. Even
if a student has written context switching code for an x86
OS, context switching into and out of a VM requires under-
standing different control structures and a different control
flow. For instance, returning from a system call leaves the
kernel stack empty, whereas entering a VM leaves frames on
the kernel stack.

Paravirtualization and hypercalls. Paravirtualization
makes small modifications to a guest OS so that particularly
expensive hardware emulation can be replaced with simpler
software abstractions, such as replacing an emulated disk
controller with a simple software ring buffer [7]. The hy-

pervisor must export these abstractions to the guest using
a hypercall interface (similar to an OS kernel’s system call
table), and the guest OS must be modified to invoke these
hypercalls rather than using privileged instructions to mod-
ify hardware directly.

Intuitively, paravirtualization improves performance by
reducing the total number of traps to the hypervisor, as
well as reducing the overhead of emulating specific hardware.
The changes required of the guest OS are simple, small, and
often encapsulated in dynamically loaded device drivers. We
observe that modern paravirtual hypervisor designs share
many similarities with an exokernel: exporting an interface
to applications that either directly accesses hardware fea-
tures where safe, or using system calls that export low-level,
hardware-like abstractions to the process. As a result, the
conceptual and implementation gap between supporting an
exokernel-style library OS and a paravirtualized guest OS is
relatively small.

4. HOSS EXERCISES
Similar to JOS, course staff provided students with HOSS

“skeleton code”, and students implement the remaining por-
tions of the hypervisor. Students also make changes to the
guest code to support paravirtualization. Both the JOS
guest and HOSS host share a code base; all guest or host-
specific code is delimited with C preprocessor macros (e.g.,
#ifdef VMM_GUEST). In order to increase the virtual address
space for the host system, we ported JOS to the 64-bit x86
architecture; we omit the details of the 64-bit port, as these
details are orthogonal to the hypervisor.

Students completed the assignments using the bochs PC
emulator, which can emulate Intel’s VT-x extensions. Using
bochs eliminated the need for each student to have access
to physical hardware, removing artificial constraints on en-
rollment. Moreover, bochs allows the student to connect a
debugger directly to the running hypervisor or guest OS,
facilitating debugging compared to bare metal.

The HOSS exercises reflect essential lessons, including the
principles of hypervisor construction summarized in §3.2,
which we explain in the rest of this section.

4.1 A VM is (almost) a Process
In HOSS, each process (struct Env) includes a flag that

indicates whether it is a normal process or a VM. Most of
the process-management code works unmodified. The two
pieces of VM-specific code students must implement are for
memory management and context switching.

Students must write code that creates and manages ex-
tended (or nested), hypervisor-level page tables. The pro-
cessor expects a slightly different layout in these page tables
than in a single-level page table; we provide the students
with helper functions and pointers to the Intel documen-
tation to manipulate these structures. Moreover, at this
point, the students have a small, working implementation
of guest-level page tables, so they have a related reference
implementation. The kernel data structures to manage allo-
cated and free memory are unchanged. When a virtual page
mapping is created for a process, HOSS uses the VM flag to
determine whether to call the handler written for extended
or single-level page tables.

Students must also write context switching code that uses
the vmlaunch and vmresume instructions. This component
introduced the most differences. When an application traps

to a traditional OS kernel, an x86 CPU transfers control to a
handler specified in the interrupt descriptor table (IDT) and
pushes the application’s registers onto an address specified
by the kernel. By ubiquitous convention, this is an empty
stack frame; when the kernel finishes handling an interrupt,
the final return (iret instruction) pops the registers and re-
turns to the application. In other words, between any two
interrupts or system calls, there is no active state on the ker-
nel stack. In contrast, Intel’s VT instructions maintain live
state on the stack when context switching into a VM. Stu-
dents had to write code that compensated for this difference
by properly switching to a different stack when switching
between multiple VMs.

Beyond these complication with context switching, stu-
dents also had to understand the fields of the VM con-
trol structure (VMCS)—a region of physical memory where
guest and host registers are saved and restored, as well as a
structure that includes flags controlling VM behavior, such
as which events cause traps. Students wrote short inline as-
sembly code to detect whether the CPU supports VT and
extended page tables, as well as context switching into and
out of the VM. As a result, students gained experience work-
ing with these hardware abstractions.

4.2 The Guest Kernel is Just a Program
Students are asked to take an ELF loader, for loading ap-

plication binaries into a process, and convert this to an ELF
loader that launches a guest kernel in a VM. Students dis-
cover that this requires very few changes, except emulating
the behavior of a PC BIOS, such as loading the bootloader
at an expected address in memory and communicating the
layout of (virtualized) physical memory to the guest kernel.

4.3 Hypercalls, Traps, and Emulation
We export the JOS system call table to the guest kernel

as hypercalls in HOSS. Students implement the code that
handles traps from the VM and redirects hypercalls to the
system call table.

Students also get an introduction to hardware emulation
by implementing the cpuid instruction. This instruction
places information about the CPU’s capabilities in several
registers, according to a format defined by the CPU vendor.
Most OSes use this instruction during boot for runtime con-
figuration. The VMCS in HOSS is configured to trap on a
cpuid instruction. The students write a trap handler that
places appropriate flags in the correct registers and manu-
ally advances the program counter before returning control
to the VM. In practice, this feature is often used to hide the
presence of features such as extended paging from a guest
VM when a hardware capability is already in use and soft-
ware emulation is not available.

4.4 Paravirtualization
Finally, students implement a paravirtual disk. The base-

line JOS code has a file system daemon, which issues hardware-
level commands directly to an IDE disk controller. In the
HOSS lab code, this is placed in a host-only preprocessor
macro, and students are asked to instead request blocks of a
disk image file from the host. These disk image file requests
are issued using host-level IPC, as illustrated in Figure 3.
The host-level file system transparently handles requests for
the disk image file just like any other file. This design does
require the guest-level IPC mechanism to translate guest vir-

Host OS Kernel

App

Virtual Machine

Guest OS

FS
Daemon

FS
Daemon

Disk

Figure 3: HOSS paravirtualized file system archi-
tecture. Both guest and host kernel execute a
microkernel-style file system daemon. The guest FS
daemon uses a hypercall to issue an IPC to the host
daemon to access its disk image. The host FS dae-
mon accesses the disk directly.

tual to guest physical addresses. Representing a hard drive
as a disk image file is extremely common, and this gives stu-
dents a clear understanding that a hard drive can easily be
represented as a file.

5. THE VIRTUALIZATION COURSE
HOSS was used as part of a new course on virtualiza-

tion for senior undergraduates and graduate students. The
course included two undergraduates, nineteen M.S. students,
and four doctoral students, for a total of 25 students. All
students in the course had completed an undergraduate OS
course, and some had completed a graduate OS course.

In addition to the HOSS assignments, students read semi-
nal and recent research papers on hypervisor design, virtual
I/O, and security. About three quarters of class sessions
were discussions about the assigned research papers, and
one quarter were in-class programming days to help stu-
dents work the assignments. Paper discussions spent equal
time on understanding the technical details of how a proto-
type system was constructed (and its relevance to the HOSS
assignment), as well as critically assessing the merit of the
research idea and its evaluation.

The HOSS assignments were completed about halfway
through the semester, and the remainder of the semester
was spent on open-ended final projects. The final projects
could be research-oriented or development tasks, and could
be extensions to HOSS or any other open-source hypervi-
sor. Students were allowed to work the HOSS assignments
and final project in self-selected teams of up to three people,
although some students chose to work alone.

5.1 Final Projects
One underlying goal of the final project is to evaluate

whether students can apply what they have learned to new
projects or codebases. This is a somewhat noisy, but mostly
positive indicator, and cases that were not clear successes
indicate further gaps in the instructional tools available (§6).

Here we list a sample of final projects and outcomes:
• Adding suspend and resume support to lguest.

Lguest is a simple hypervisor written for a Linux host, us-
ing the same kernel-internal interfaces as KVM [28]. The
undergraduate students were able to independently read,

understand, and extend the lguest source code with sus-
pend and resume support.
• Virtual Networking. Several groups added virtual net-

working support to HOSS, but with different strategies.
In general, most successful groups adopted a paravirtual
strategy, which exposed a new interface for packet deliv-
ery to the guest via ring buffers, and wrote a new guest
driver using these paravirtual interfaces.
• Better VM benchmarks. Several students felt that

virtualization research would benefit from standardized
microbenchmarks. These teams successfully added timing
and other instrumentation to benchmark KVM.
• Multi-Processor Support. One team developed multi-

processor support for HOSS, such that multiple guests
can run concurrently on different cores. This team was
delayed somewhat by an underlying bug in JOS’s support
for multiple processors, which they fixed. By the end of
the semester, the host kernel supported multiple CPUs,
but guests were still single-CPU.
• AMD Virtualization Hardware. One student tried

to port HOSS from Intel’s VT to AMD’s SVM equiva-
lent [1]. Intel and AMD expose comparable, but different
interfaces and abstractions for virtualization support. Un-
fortunately, no emulator exposes the AMD instructions,
and the student worked directly on bare metal. Without
the ability to attach a debugger to the system, and lack-
ing debugging information from the emulator itself, this
project proved too ambitious for the time frame.

In general, these results indicate that students understood
the architecture of the system, and were able to solve new
problems and work with new code bases.

5.2 Student Feedback
At the end of the course, students were given both an

anonymous, university-issued survey, as well as the opportu-
nity to give feedback directly to the instructor. Numerically,
the course evaluation scores were positive: overall a 4.65 out
of 5, compared to a 4.34 university average. However, the
qualitative comments from both surveys tended to be more
informative. We observe the following trends:
• The course contained a mix of students who had previ-

ously completed JOS and those who had not. The stu-
dents who did not complete JOS previously felt that they
needed to complete most of the previous assignments to
fully understand the code, even when given a solution.
• Comments about HOSS itself were quite positive. Stu-

dents repeatedly commented that they learned a lot and
found the exercises worthwhile. Students generally re-
quested more HOSS exercises, which we will add in future
versions of the course.
• Most students enjoyed learning to read research papers,

but a minority prefer a textbook-and-lecture style course.
Most found a useful connection between programming as-
signments and the higher-level performance and function-
ality analysis of the research papers.
Based on this feedback, HOSS’s hands-on approach to

learning about virtualization was effective, and students gen-
erally wanted more system implementation exercises.

6. FUTURE WORK
HOSS is an ongoing effort, which we will use in future

courses. We plan to add the following features to HOSS:

• More exercises with device emulation in software.
A little device emulation goes a long way, as this task
quickly becomes tedious. We envision providing a mostly-
complete model of a disk or network card, and then asking
students to add missing feature and use the model to im-
plement trap-and-emulate behavior.
• Execute an unmodified Guest OS. The current JOS

guest requires light modifications, primarily to avoid such
emulation. We ultimately want to be able to support an
unmodified JOS guest, as well as a mainstream OS, such
as Linux or Windows.
• Add binary translation for systems without vir-

tualization hardware. For older x86 systems, binary
translation was necessary to properly catch and replace
certain privileged instructions. We plan to add exercises
that program a binary translator, such as the one used
internally by qemu.

Most of these tasks require relatively straightforward en-
gineering effort, and exercises using these features can be
kept manageable for students. The current HOSS assign-
ments cover the essential concepts, but the ability to boot
an unmodified binary kernel within a semester would make
the project more attractive for students.

We would also like to provide exercises programming re-
cent IOMMU hardware that allows direct device manage-
ment from a VM [2] and network cards that can be exported
as multiple virtual NICs [26]. Unfortunately, current hard-
ware emulators do not support this feature. In fact, most
emulators and simulators do not include virtualization ex-
tensions at all. In our experience, students can grasp con-
cepts and solve problems more quickly with familiar debug-
ging tools—tools that are harder to support on bare metal.
Thus, an important direction for future work is simply build-
ing emulator infrastructure for teaching and debugging.

A substantial limitation of this work is that it is part of an
advanced, two-course sequence. An important direction for
future education research is to develop a stand-alone varia-
tion of the course or to adapt components of this work to
exercises in isolation, emulation or performance analysis for
a core undergraduate systems course.

7. CONCLUSION
HOSS gives students hands-on experience with hypervi-

sor construction. These exercises target an advanced, two-
course OS/virtualization sequence. The exercises are suit-
able for an advanced undergraduate or graduate student,
and yield intuitions that are applicable to new problems
and other hypervisors. Our initial experiences with HOSS
are positive, although there is room for improvement in the
assignments as well as current emulation tools. Our as-
signment code and exercises are publicly available at http:

//www.cs.stonybrook.edu/~porter/hoss and solutions are
available to instructors upon request.

8. ACKNOWLEDGMENTS
We thank the many contributors to JOS for creating a

wonderful building block for HOSS. We thank Michael
Tashbook and the anonymous reviewers for insightful
comments on earlier drafts of this paper. This research was
supported in part by NSF grants CNS-1149229,
CNS-1161541, CNS-1228839, and the Office of the Vice
President for Research at Stony Brook University.

References
[1] AMD. AMD-V Nested Paging. White Paper, AMD:

http://developer.amd.com/assets/NPT-WP-1\

%201-final-TM.pdf, July 2008.

[2] AMD. AMD I/O Virtualization Technology (IOMMU)
Specification Revision 1.26. White Paper, AMD:
http://support.amd.com/us/Processor_TechDocs/

34434-IOMMU-Rev_1.26_2-11-09.pdf, Nov 2009.

[3] C. L. Anderson and M. Nguyen. A survey of
contemporary instructional operating systems for use
in undergraduate courses. J. Comput. Sci. Coll.,
21(1):183–190, Oct. 2005.

[4] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and
J. Nieh. Cells: A virtual mobile smartphone
architecture. In SOSP, pages 173–187, 2011.

[5] J. Andrus and J. Nieh. Teaching operating systems
using android. In SIGCSE, pages 613–618, 2012.

[6] B. Atkin and E. G. Sirer. Portos: An educational
operating system for the post-pc environment. In
SIGCSE, pages 116–120, 2002.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP, pages 164–177, 2003.

[8] F. Bellard. Qemu, a fast and portable dynamic
translator. In USENIX ATC, pages 41–41, 2005.

[9] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The Turtles Project: Design and
implementation of nested virtualization. In OSDI,
2010.

[10] D. Brylow. An experimental laboratory environment
for teaching embedded operating systems. In SIGCSE,
pages 192–196, 2008.

[11] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman,
and E. Y. Wang. Bringing virtualization to the x86
architecture with the original VMware workstation.
ACM Trans. Comput. Syst., 30(4):12:1–12:51, Nov.
2012.

[12] D. Chisnall. The Definitive Guide to the Xen
Hypervisor. Prentice Hall Press, 1st edition, 2007.

[13] W. A. Christopher, S. J. Procter, and T. E. Anderson.
The nachos instructional operating system. In
USENIX Winter Conference, pages 4–4, 1993.

[14] S. Cooper. Vmware android handset virtualization
hands-on. Retrieved Sept. 1, 2014 from
http://www.engadget.com/2011/02/15/

vmware-android-handset-virtualization-hands-on/,
2011.

[15] R. Davoli and M. Goldweber. Virtual square (v2) in
computer science education. In ITiCSE, pages
301–305, 2005.

[16] P. Dinda. Eecs 441: Resource virtualization, winter
2014. Retrieved Sept. 1, 2014 from
http://pdinda.org/virt-w14/.

[17] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for
application-level resource management. In SOSP,
pages 251–266, 1995.

[18] R. Hess and P. Paulson. Linux kernel projects for an
undergraduate operating systems course. In SIGCSE,
pages 485–489, 2010.

[19] D. A. Holland, A. T. Lim, and M. I. Seltzer. A new
instructional operating system. In SIGCSE, pages
111–115, 2002.

[20] JOS OS Lab. Retrieved Sept. 1, 2014 from
http://pdos.csail.mit.edu/6.828.

[21] M. Ketel. A virtualized environment for teaching
IT/CS laboratories. In SE, pages 92:1–92:2, 2010.

[22] O. Laadan, J. Nieh, and N. Viennot. Teaching
operating systems using virtual appliances and
distributed version control. In SIGCSE, pages
480–484, 2010.

[23] B. Lawson and L. Barnett. Using ipodlinux in an
introductory os course. In SIGCSE, pages 182–186,
2008.

[24] H. Liu, X. Chen, and Y. Gong. Babyos: A fresh start.
In SIGCSE, pages 566–570, 2007.

[25] J. Owens. Using virtualization to teach Linux system
administration in online courses. In IBM ICVCI, 2007.

[26] PCI-SIG. Address translation services 1.1
specification.
http://www.pcisig.com/members/downloads/

specifications/iov/ats_r1.1_26Jan09.pdf.

[27] B. Pfaff, A. Romano, and G. Back. The pintos
instructional operating system kernel. In SIGCSE,
pages 453–457, 2009.

[28] R. Russell. Lguest: The simple x86 hypervisor.
Retrieved Sept. 1, 2014 from
http://lguest.ozlabs.org.

[29] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating System Concepts. 9th edition, 2012.

[30] J. Smith and R. Nair. Virtual Machines: Versatile
Platforms for Systems and Processes. Morgan
Kaufmann Publishers Inc., 2005.

[31] W. Sun, V. Katta, K. Krishna, and R. Sekar.
V-NetLab: An approach for realizing logically isolated
networks for security experiments. In CSET, pages
5:1–5:6, 2008.

[32] A. S. Tanenbaum. A unix clone with source code for
operating systems courses. OSR, 21(1):20–29, Jan.
1987.

[33] A. S. Tanenbaum and H. Bos. Modern Operating
Systems. 4th edition, 2014.

[34] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C.
Martins, A. V. Anderson, S. M. Bennett, lain Kägi,
F. H. Leung, and L. Smith. Intel virtualization
technology. In IEEE Computer, pages 48 – 56, 2005.

