
12  FA L L 2020 VO L . 45 , N O. 3 www.usenix.org

SYSTEMS

How to Not Copy Files
Y A N G Z H A N , A L E X C O N W A Y , N I R J H A R M U K H E R J E E , I A N G R O O M B R I D G E ,
M A R T Í N F A R A C H - C O L T O N , R O B J O H N S O N , Y I Z H E N G J I A O , M I C H A E L A . B E N D E R ,
W I L L I A M J A N N E N , D O N A L D E . P O R T E R , A N D J U N Y U A N

Making logical copies, or clones, of files and directories is critical to
many real-world applications and workflows, including backups,
virtual machines, and containers. In this article, we explore the

performance characteristics of an ideal cloning implementation; we show
why copy-on-write induces a trade-off that prevents existing systems from
achieving the ideal constellation of performance features; and we show how to
achieve strong cloning performance in an experimental file system, BetrFS.

Many real-world workf lows rely on efficiently copying files and directories. Backup and
snapshot utilities need to make copies of the entire file system on a regular schedule. Virtual-
machine servers create new virtual machine images by copying a pristine disk image. More
recently, container infrastructures like Docker make heavy use of file and directory copying
to package and deploy applications [5], and new container creation typically begins by making
a copy of a reference directory tree.

Duplicating large objects is so prevalent that many file systems support logical copies of files
or directory trees without making full physical copies. A physical copy is one where data
blocks are duplicated, whereas a logical copy is one where data blocks may be shared. We call
writable, logical copies clones.

Writes to a logical copy should not modify the original file and vice versa. A classic way to
maintain the content of a file is copy-on-write (CoW), where shared blocks are physically
copied as soon as they are modified. Initially, this approach is also space efficient because
blocks or files need not be rewritten until they are modified.

Many logical volume managers support CoW snapshots, and some file systems support CoW
file or directory clones via cp --reflink or other implementation-specific interfaces. Many
implementations have functional limitations, such as only cloning files, special directories
marked as “subvolumes,” or read-only clones. Nonetheless, we will refer to all these features
as cloning.

Performance goal: nimble clones. An ideal clone implementation will have strong perfor-
mance along several dimensions. In particular, clones should:

 3 be fast to create;
 3 have excellent read locality, so that logically related files can be read at near-disk bandwidth,
even after modification;
 3 have fast writes, both to the original and the clone; and
 3 conserve space, in that the write amplification and disk footprint are as small as possible,
even after updates to the original or to the clone.

We call a clone with this constellation of performance features nimble.

Production clone implementations are not nimble. Nimble clones are the performance
ideal, but CoW cloning does not yield nimble performance. This may seem surprising, espe-
cially given that CoW has been the de facto way to implement clones for decades.

Yang Zhan recently completed
his PhD at the University of
North Carolina at Chapel Hill and
now works as a senior engineer
in the Operating Systems Kernel

Lab at Huawei. yzhan@cs.unc.edu

Alex Conway recently completed
his PhD at Rutgers University
and is now a researcher at
VMware. His interests focus
on high-performance storage

systems at the intersection of theory and
practice. conway@ajhconway.com

Yizheng Jiao is a PhD student
in the Computer Science
Department at the University of
North Carolina at Chapel Hill. He
designs and implements efficient

storage systems (e.g., in-kernel file systems and
databases). yizheng@cs.unc.edu

Nirjhar Mukherjee is an
undergrad at the University of
North Carolina at Chapel Hill.
nirjharm@gmail.com

Ian Groombridge is an
undergrad at Pace University.
igroombridge2010@gmail.com

Michael A. Bender is a professor
of computer science at Stony
Brook University. His research
focuses on theory of algorithms
and their use in storage systems.

bender@cs.stonybrook.edu

www.usenix.org FA L L 2020 VO L . 45 , N O. 3 13

SYSTEMS
How to Not Copy Files

Martín Farach-Colton is a
professor of computer science at
Rutgers University. His research
focuses on theory of algorithms
and their use in storage systems.

martin@farach-colton.com

Bill Jannen is an assistant
professor of computer science at
Williams College. His research
interests span a variety of
topics, from computer science

education to storage systems.
jannen@cs.williams.edu

The Copy-on-Write Granularity Problem, or Why It’s Hard to Achieve
Nimble Clones
We begin by describing a simple implementation of CoW cloning in an inode-based file sys-
tem. Although details will vary depending on the specifics of the file system, all existing pro-
duction file systems share the CoW granularity trade-off illustrated in our simplified design
below. This trade-off prevents these file systems from implementing nimble clones.

To clone a file from a to b, the file system can set up b’s inode to point to all the same data
blocks as a’s inode, and both inodes are modified to mark all blocks as copy-on-write. With
this approach, clones are cheap to create. In fact, if the file system uses extent trees to manage
file blocks, it can mark entire subtrees of the extent tree as copy-on-write. This means that, to
create the clone, the file system needs only to set up the old and new inodes to point to the same
extent tree using copy-on-write.

This approach is also space efficient at first and preserves the locality of blocks within the file.
If the blocks of the original file were laid out sequentially, then so are the clone’s, so sequential
reads from both will be fast. Note that this approach does not maintain inter-file locality: the
blocks of clone b may be quite distant from the blocks of other files in b’s directory.

The challenge is to maintain space efficiency and good read locality as the files are edited.

Whenever the file system performs a write to a shared block of either file, the file system
must allocate a new block and redirect the modified file’s inode to point to the new data block.

This simple but representative implementation of CoW exhibits a trade-off among space
conservation, read locality, and write throughput. The main tuning parameter for CoW is
the copy granularity. Copy granularity is the size of the data block that is copied when a file is
modified. At one extreme, the entire file can be copied, and at the other, the system might only
copy a sector on the device—typically 512 bytes or 4 KiB.

File-granularity CoW can have poor write throughput and space efficiency. If one makes a
small change to a large file, this small write will incur the cost of copying the entire file and
miss a significant opportunity to share a large portion of identical contents. File-granularity
CoW favors read locality, but even this goal isn’t quite met: if a small file is modified and cop-
ied, its placement in storage can cause inter-file fragmentation and, thus, low read through-
put for some workloads.

At the other extreme, fine-granularity CoW, say at block granularity, will struggle to conserve
locality. Over time, the blocks of a file can scatter across the storage device as they are allo-
cated 4 KiB at a time. For example, consider a large file that is initially placed in a physically
contiguous run of blocks, cloned, and then a series of small, random writes are issued to both
files. As soon as one block in the middle of this run is modified, the block must be rewritten out-
of-place. This block is now far from its neighbors in either the original, the clone, or both. Many
file systems have heuristics for placing logically related blocks near each other at allocation
time, but, in practice, this is not enough to prevent aging over the lifetime of the file system [2].

Put differently, small, random writes force simple CoW schemes either (1) to choose perfor-
mance at write time and space efficiency (with fine-grained CoW) at the cost of read per-
formance in the future, or (2) to choose read locality in the future (with coarse-grained CoW)
at a higher write and space overhead.

BetrFS overcomes this trade-off by (1) aggregating small random application-level writes
into large sequential disk writes and (2) using large CoW blocks. By aggregating small
random writes, BetrFS ensures that random writes are fast and space efficient. By using
large CoW blocks, it ensures that locality is maintained even as sharing is broken. See section
“Nimble Clones in BetrFS” for details.

Rob Johnson is a senior
staff researcher at VMware
Research, where he works on the
theoretical and applied aspects
of high-performance storage

systems. robj@vmware.com

Don Porter is an associate
professor of computer science
at the University of North
Carolina at Chapel Hill. His
research focuses on improving

performance, security, and usability of
computer systems. porter@cs.unc.edu

Jun Yuan is an assistant
professor of computer science at
Pace University. She is interested
in building storage systems with
solid theoretical foundation and

with measured performance that matches the
analysis. jyuan2@pace.edu

14  FA L L 2020 VO L . 45 , N O. 3 www.usenix.org

SYSTEMS
How to Not Copy Files

Cloning Performance in Real File Systems
In this section, we use a microbenchmark to demonstrate the
CoW-granularity trade-off in real file systems, and to show that
BetrFS overcomes this trade-off. We then demonstrate how
nimble clones can be used to accelerate real applications, such
as container instantiation.

Dookubench: A Cloning Microbenchmark
To demonstrate the challenges to cloning performance in pro-
duction file systems, we wrote a cloning microbenchmark, which
we call Dookubench. Like its Star Wars namesake, it makes
adversarial use of cloning. The benchmark begins by creating a
directory hierarchy with eight directories, each containing eight
4-MiB files. Dookubench then proceeds in rounds. In each round,
it creates a new clone of the original directory hierarchy and
measures the clone operation’s latency. It then writes 16 bytes to
a 4 KiB-aligned offset in each newly cloned file—followed by a
sync—in order to measure the impact of copy-on-write on writes.
The benchmark then clears the file system caches and greps the
newly copied directory to measure cloning’s impact on read time.
Finally, the benchmark records the change in space consumption
for the whole file system at each step.

We use Dookubench to evaluate cloning performance in Btrfs,
XFS, ZFS, and BetrFS. All experimental results were collected
on a Dell Optiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU,
4 GiB RAM, and a 500 GB, 7200 RPM SATA disk, with a 4096-

byte block size. The system runs 64-bit Ubuntu 14.04.5. Note
that only BetrFS supports clones of arbitrary files and directo-
ries. We deal with the limitations of other file systems as follows.
In Btrfs and XFS, we copy the directory structure in each round
and use cp --reflink to create clones of all the files. For ZFS, we
configure the root of the benchmark directory as a sub-volume,
and use ZFS’s volume snapshotting functionality to perform
the clone.

The write-granularity trade-off is illustrated clearly in Table 1
and Figure 1c. XFS uses relatively little space per round, suggest-
ing it is using a small CoW block size. As would be expected of
a CoW system with a small block size, Figure 1c shows that the
amount of time required to scan through all the contents of the
cloned directory degrades with each round of the experiment—
after six clones, the grep time is nearly doubled. There appears to
be some work that temporarily improves locality, but the degra-
dation trend resumes after more iterations (not shown).

The Btrfs grep performance is much flatter, but this comes at the
cost of much larger space usage per clone—Btrfs used an average
of 176 KiB per clone, compared to 16.3 KiB for BetrFS and 32.6
KiB for XFS. Furthermore, its performance is not completely
flat: Btrfs degrades by about 20% during the experiment. After
17 iterations (not presented for brevity), Btrfs read performance
degrades by 50% with no indication of leveling off. ZFS is both
space-inefficient, using 250 KiB per clone, and shows more
than a 2× degradation in scan performance throughout the
experiment.

Only BetrFS achieves low space per clone while maintaining
locality, as shown by its flat performance on the grep benchmark.
BetrFS uses 16 KiB per clone—half the space of the next-most-
space-efficient file system (XFS)—and its read performance is
competitive with the much less space-efficient Btrfs.

BetrFS excels at clone creation (Figure 1a) and small random
writes to clones (Figure 1b). BetrFS’s cloning time is around 60
ms, which is 33% faster than the closest data point from another

Table 1: Average change in space usage after each Dookubench round
(a directory clone followed by small, 4 KiB-aligned modifications to each
newly cloned file)

Figure 1: Latency to clone, write, and read as a function of the number of times a directory tree has been cloned. Lower is better for all measures.

FS ∆ KiB/round

Btrfs 176

XFS    32.6

ZFS 250

BetrFS    16.3

www.usenix.org FA L L 2020 VO L . 45 , N O. 3 15

SYSTEMS
How to Not Copy Files

file system (the first clone on XFS) and an order of magnitude
faster than the worst case for the competition. Furthermore,
BetrFS ’s clone performance is essentially flat throughout the
experiment. ZFS also has flat volume-cloning performance,
but not as flat as BetrFS. Both Btrfs and XFS file-level clone
latencies, on the other hand, degrade as a function of the number
of prior clones; after eight iterations, clone latency is roughly
doubled.

In terms of write costs, the cost to write to a cloned file or volume
is flat for all file systems, although BetrFS can ingest writes
8–10× faster. This derives from BetrFS’s write-optimized design.

In total, these results indicate that BetrFS supports a seemingly
paradoxical combination of performance features: clones are fast
and space-efficient, and random writes are fast, yet preserve good
locality for sequential reads. No other file system in our bench-
marks demonstrated this combination of performance strengths,
and some also showed significant performance declines with
each additional clone.

Cloning Containers
Linux Containers (LXC) is one of several popular container
infrastructures that has adopted a number of storage back ends
in order to optimize container creation. The default back end
(dir) does an rsync of the component directories into a single,
chroot-style working directory. The ZFS and Btrfs back ends
use subvolumes and clones to optimize this process. We wrote a
BetrFS back end using directory cloning.

Table 2 shows the latency of cloning a default Ubuntu 14.04 con-
tainer using each back end. Container instantiation using clones
on BetrFS is 3–4× faster than the other cloning back ends, and
up to two orders of magnitude faster than the rsync-based back
ends. Interestingly, BetrFS is also the fastest file system using
the rsync-based back end, beating the next fastest file system
(Btrfs) by more than 40%.

Nimble Clones in BetrFS
This section overviews the four key techniques BetrFS uses to
realize nimble clones. The interested reader can find a detailed
explanation, as well as related work, in our recent FAST ’20
paper [4].

BetrFS [1, 3] is an in-kernel, local file system built on a key-value
store (KVstore) substrate. A BetrFS instance keeps two KVstores.
The metadata KVstore maps full paths (relative to the mount-
point, e.g., /foo/bar/baz) to struct stat structures, and the data
KVstore maps {full path + block number} keys to 4 KiB blocks.

BetrFS is named for its KVstore data structure, the Bε-tree [1].
A Bε-tree is a write-optimized KVstore in the same family of
data structures as LSM-trees (Log-Structured Merge-tree).
Like B-tree variants, Bε-trees store key-value pairs in leaves. A

key feature of the Bε-tree is that interior nodes buffer pending
mutations to the leaf contents, encoded as messages. Messages
are inserted into the root of the tree, and, when an interior node’s
buffer fills with messages, messages are flushed in large batches
to one or more children’s buffers. Eventually, messages reach the
leaves and the updates are applied. As a consequence, random
updates are inexpensive—the Bε-tree effectively logs updates at
each node. Note that these buffers are bounded in size to a few
MiB, and buffers are never allowed to grow so large that they
suffer from common pathologies in a fully log-structured file sys-
tem. And since updates move down the tree in batches, the I/O
savings grow with the batch size.

A key change needed to share data at rest is to convert the Bε-tree
into a Bε-Directed Acyclic Graph (DAG). Nodes in the Bε-DAG
can be shared among multiple paths from the root to a leaf; shar-
ing a sub-graph of the Bε-DAG yields space-efficient clones. So
far, this is a standard approach to copy-on-write. A nimble design
is realized with four additional techniques.

Technique 1: Write Optimization. In order to avoid the granu-
larity trade-off of CoW, we use buffers in a Bε-DAG to accumu-
late small writes to a cloned file or directory. The key feature of
write-optimization that contributes to nimble clones is “pinning”
messages above a shared node in the Bε-DAG. For example, if we
clone a large file foo to bar and make a small modification to bar,
that change is encoded in a message and written into the root of
the tree, with destination bar. However, this message will not be
flushed into a shared node in the Bε-DAG, or else it would “leak”
the change into the original file foo. Holding a small “delta” in the
parent node is more space efficient than making a full copy for
a small change, or even copying one leaf node. Instead, we wait
until enough changes for foo or bar accumulate so that little of
the remaining content is shared, and then we break that sharing
by creating two unique, unshared copies of a node and repacking
the contents, potentially recovering locality. We call this tech-
nique Copy-on-Abundant-Write (CAW).

Back End File System lxc-clone (s)

Dir

ext4 19.514

Btrfs 14.822

ZFS 16.194

XFS 55.104

NILFS2 26.622

BetrFS  8.818

ZFS ZFS  0.478

Btrfs Btrfs  0.396

BetrFS BetrFS  0.118

Table 2: Latency of cloning a container

16  FA L L 2020 VO L . 45 , N O. 3 www.usenix.org

SYSTEMS
How to Not Copy Files

Technique 2: Full-Path Indices. BetrFS maintains inter-file
locality and supports arbitrary file and directory clones by
using full-path indexing. BetrFS indexes all files and blocks by
their full path, and paths are sorted in DFS (depth first search)
traversal order. This means that all the paths for a sub-tree of
the directory hierarchy are contiguous in the key space. As a
result, a DFS traversal of the directory hierarchy will correspond
to a linear scan of the key-space, which will translate into large
sequential I/Os, since the BetrFS Bε-tree uses 4 MiB nodes.

Furthermore, this means that cloning an entire sub-tree of the
directory hierarchy corresponds to cloning a contiguous range
of keys, all of which have a common prefix.

Technique 3: Lifting. As stated so far, key-value pairs encode
full pathnames. So nodes or sub-graphs at rest will be shared
but have incorrect, full-path keys along one of the shared paths.
In our example above, nodes storing the key-value pairs backing
bar will initially have foo keys. We observe that cloning a file or
directory from a to b is essentially duplicating all the key-value
pairs that start with a to new key-value pairs in which a has been
replaced by b in each key.

Lifting removes a common prefix from the keys of a node and
instead stores this prefix along with the pointer and pivot keys
in the parent. For instance, if an entire Bε-DAG leaf stores key-
value pairs under directory /home/user, this common prefix
would be removed from each key-value pair in that leaf, and
instead the prefix is stored once in the parent, retaining only
“short” pathnames in the child. With lifting, two parents with
different directory prefixes can share a node, copy-on-write, and
queries dynamically construct the full-path key based on the
path taken through the graph to reach a given node.

Technique 4: Lazy Updates. In order to keep latency of a copy
low, we must batch and amortize the cost of updates. First, we
create GOTO messages that edit the Bε-DAG itself as they are
flushed. This is new; previously, all write-optimized dictionaries
only batched changes to the data, not the data structure itself.
Specifically, a GOTO message encodes a pointer that adds an
edge to the graph, redirecting searches for a cloned key range
to the source of the copy. These messages are flushed down the
graph in a batch, and eventually become regular edges once they
reach a target height.

The discussion to this point assumes that a cloned file or direc-
tory happens to be within a proper sub-graph in the Bε-DAG; this
may not be the case, as nodes in a Bε-DAG do not have the same
structure as the file system directory tree. Nodes in a Bε-DAG
pack as many keys (in key order) as needed to reach a target node
size; thus a node may contain multiple small files packed into a
4 MiB node or a single 4 MiB chunk of a large file. Rather than
immediately removing data outside of the cloned range, and

making a proper sub-graph with the source prefix removed, we
instead add additional bookkeeping to delay these edits.

Specifically, we augment lifted pointers with translation prefixes,
which can specify both a prefix substitution for data at rest that
has not already been handled by lifting and, implicitly, a range of
keys in a child to ignore. In the example of cloning foo, the root
of the sub-graph storing foo may also include keys for fii and
fuu; a filter on the path for bar would specify that any query that
follows this path should ignore keys without prefix foo. Similarly,
if the sub-graph for foo has not yet lifted foo out of the children, a
translation prefix along the path to bar would indicate that, when
looking in the foo sub-graph, any keys that start with foo should
be translated to have prefix bar.

Conclusion
This article demonstrates that a variety of file systems opera-
tions are instances of a clone operation, and the available imple-
mentations share the same copy-on-write-induced trade-off.
This trade-off can be avoided by using write-optimization to
decouple writes from copies, rendering a cloning implementa-
tion in BetrFS with the nimble performance properties: efficient
clones, efficient reads, efficient writes, and space efficiency. The
latency of the clone itself, as well as subsequent writes, are kept
low by inserting a message into the tree. By making the changes
in large batches, BetrFS conserves space. As data is copied on
abundant writes, read locality is preserved and recovered by
using full-path indexing to repack logically contiguous data into
large, physically contiguous nodes. This unlocks improvements
for real applications, such as a 3–4× improvement in LXC con-
tainer cloning time compared to specialized back ends.

Acknowledgments
This research was supported in part by NSF grants
CCF-1715777, CCF1724745, CCF-1725543, CSR-1763680,
CCF-1716252, CCF-1617618, CCF1712716, CNS-1938709,
and CNS-1938180. The work was also supported by VMware,
by EMC, and by NetApp Faculty Fellowships.

www.usenix.org FA L L 2020 VO L . 45 , N O. 3 17

SYSTEMS
How to Not Copy Files

References
[1] M. A. Bender, M. Farach-Colton, W. Jannen, R. Johnson, B. C.
Kuszmaul, D. E. Porter, J. Yuan, and Y. Zhan, “An Introduction to
Bε-trees and Write-Optimization,” :login;, vol. 40, no. 5 (October
2015), pp. 22–28: https://www.usenix.org/system/files/login
/articles/login_oct15_05_bender.pdf.

[2] A. Conway, A. Bakshi, Y. Jiao, Y. Zhan, M. A. Bender, W. Jan-
nen, R. Johnson, B. C. Kuszmaul, D. E. Porter, J. Yuan, and M.
Farach-Colton, “How to Fragment Your File System,” :login;,
vol. 4, no. 2 (Summer 2017), pp. 6–11: https://www.usenix.org
/system/files/login/articles/login_summer17_02_conway.pdf.

[3] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao,
A. Mittal, P. Pandey, P. Reddy, L. Walsh, M. A. Bender, M. Farach-
Colton, R. Johnson, B. C. Kuszmaul, and D. Porter, “BetrFS:
Write-Optimization in a Kernel File System,” ACM Transac-
tions on Storage, vol. 11, no. 4 (November 2015), pp. 18:1–18:29:
https://www.cs.unc.edu/~porter/pubs/a18-jannen.pdf.

[4] Y. Zhan, A. Conway, Y. Jiao, N. Mukherjee, I. Groombridge,
M. A. Bender, M. Farach-Colton, W. Jannen, R. Johnson, D.
 Porter, and J. Yuan, “How to Copy Files,” in Proceedings of the
18th USENIX Conference on File and Storage Technologies
(FAST ’20), pp. 75–89: https://www.usenix.org /conference
/fast20 /presentation/zhan.

[5] F. Zhao, K. Xu, and R. Shain, “Improving Copy-On-Write
 Performance in Container Storage Driver,” 2016 Storage
Developer Conference (SDC 2016): https://www.snia.org/sites
/default/files/SDC/2016/presentations/capacity_optimization
/FrankZaho_Improving_COW_Performance _ContainerStorage
_Drivers-Final-2.pdf.

19th USENIX Conference on
File and Storage Technologies

PROGRAM CO-CHAIRS

Gala Yadgar
Technion—Israel Institute

of Technology

Marcos K. Aguilera
VMware Research

Submissions due September 24, 2020
www.usenix.org/fast21/cfp

February 22–25, 2021 | Santa Clara, CA, USA

The 19th USENIX Conference on File and Storage Technologies (FAST ’21) brings
together storage-system researchers and practitioners to explore new directions in
the design, implementation, evaluation, and deployment of storage systems.

https://www.usenix.org/system/files/login/articles/login_oct15_05_bender.pdf
https://www.usenix.org/system/files/login/articles/login_oct15_05_bender.pdf
https://www.usenix.org/system/files/login/articles/login_summer17_02_conway.pdf
https://www.usenix.org/system/files/login/articles/login_summer17_02_conway.pdf
https://www.cs.unc.edu/~porter/pubs/a18-jannen.pdf
https://www.usenix.org/conference/fast20/presentation/zhan
https://www.usenix.org/conference/fast20/presentation/zhan
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf

