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Making logical copies, or clones, of files and directories is critical to 
many real-world applications and workflows, including backups, 
virtual machines, and containers. In this article, we explore the 

performance characteristics of an ideal cloning implementation; we show 
why copy-on-write induces a trade-off that prevents existing systems from 
achieving the ideal constellation of performance features; and we show how to 
achieve strong cloning performance in an experimental file system, BetrFS.

Many real-world workf lows rely on efficiently copying files and directories. Backup and 
snapshot utilities need to make copies of the entire file system on a regular schedule. Virtual-
machine servers create new virtual machine images by copying a pristine disk image. More 
recently, container infrastructures like Docker make heavy use of file and directory copying 
to package and deploy applications [5], and new container creation typically begins by making 
a copy of a reference directory tree.

Duplicating large objects is so prevalent that many file systems support logical copies of files 
or directory trees without making full physical copies. A physical copy is one where data 
blocks are duplicated, whereas a logical copy is one where data blocks may be shared. We call 
writable, logical copies clones.

Writes to a logical copy should not modify the original file and vice versa. A classic way to 
maintain the content of a file is copy-on-write (CoW), where shared blocks are physically 
copied as soon as they are modified. Initially, this approach is also space efficient because 
blocks or files need not be rewritten until they are modified.

Many logical volume managers support CoW snapshots, and some file systems support CoW 
file or directory clones via cp --reflink or other implementation-specific interfaces. Many 
implementations have functional limitations, such as only cloning files, special directories 
marked as “subvolumes,” or read-only clones. Nonetheless, we will refer to all these features 
as cloning.

Performance goal: nimble clones. An ideal clone implementation will have strong perfor-
mance along several dimensions. In particular, clones should:

 3 be fast to create;
 3 have excellent read locality, so that logically related files can be read at near-disk bandwidth, 
even after modification;
 3 have fast writes, both to the original and the clone; and
 3 conserve space, in that the write amplification and disk footprint are as small as possible, 
even after updates to the original or to the clone.

We call a clone with this constellation of performance features nimble.

Production clone implementations are not nimble. Nimble clones are the performance 
ideal, but CoW cloning does not yield nimble performance. This may seem surprising, espe-
cially given that CoW has been the de facto way to implement clones for decades.
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The Copy-on-Write Granularity Problem, or Why It’s Hard to Achieve 
Nimble Clones
We begin by describing a simple implementation of CoW cloning in an inode-based file sys-
tem. Although details will vary depending on the specifics of the file system, all existing pro-
duction file systems share the CoW granularity trade-off illustrated in our simplified design 
below. This trade-off prevents these file systems from implementing nimble clones.

To clone a file from a to b, the file system can set up b’s inode to point to all the same data 
blocks as a’s inode, and both inodes are modified to mark all blocks as copy-on-write. With 
this approach, clones are cheap to create. In fact, if the file system uses extent trees to manage 
file blocks, it can mark entire subtrees of the extent tree as copy-on-write. This means that, to 
create the clone, the file system needs only to set up the old and new inodes to point to the same 
extent tree using copy-on-write.

This approach is also space efficient at first and preserves the locality of blocks within the file. 
If the blocks of the original file were laid out sequentially, then so are the clone’s, so sequential 
reads from both will be fast. Note that this approach does not maintain inter-file locality: the 
blocks of clone b may be quite distant from the blocks of other files in b’s directory. 

The challenge is to maintain space efficiency and good read locality as the files are edited.

Whenever the file system performs a write to a shared block of either file, the file system 
must allocate a new block and redirect the modified file’s inode to point to the new data block.

This simple but representative implementation of CoW exhibits a trade-off among space 
conservation, read locality, and write throughput. The main tuning parameter for CoW is 
the copy granularity. Copy granularity is the size of the data block that is copied when a file is 
modified. At one extreme, the entire file can be copied, and at the other, the system might only 
copy a sector on the device—typically 512 bytes or 4 KiB.

File-granularity CoW can have poor write throughput and space efficiency. If one makes a 
small change to a large file, this small write will incur the cost of copying the entire file and 
miss a significant opportunity to share a large portion of identical contents. File-granularity 
CoW favors read locality, but even this goal isn’t quite met: if a small file is modified and cop-
ied, its placement in storage can cause inter-file fragmentation and, thus, low read through-
put for some workloads.

At the other extreme, fine-granularity CoW, say at block granularity, will struggle to conserve 
locality. Over time, the blocks of a file can scatter across the storage device as they are allo-
cated 4 KiB at a time. For example, consider a large file that is initially placed in a physically 
contiguous run of blocks, cloned, and then a series of small, random writes are issued to both 
files. As soon as one block in the middle of this run is modified, the block must be rewritten out-
of-place. This block is now far from its neighbors in either the original, the clone, or both. Many 
file systems have heuristics for placing logically related blocks near each other at allocation 
time, but, in practice, this is not enough to prevent aging over the lifetime of the file system [2].

Put differently, small, random writes force simple CoW schemes either (1) to choose perfor-
mance at write time and space efficiency (with fine-grained CoW) at the cost of read per-
formance in the future, or (2) to choose read locality in the future (with coarse-grained CoW) 
at a higher write and space overhead.

BetrFS overcomes this trade-off by (1) aggregating small random application-level writes 
into large sequential disk writes and (2) using large CoW blocks. By aggregating small 
random writes, BetrFS ensures that random writes are fast and space efficient. By using 
large CoW blocks, it ensures that locality is maintained even as sharing is broken. See section 
“Nimble Clones in BetrFS” for details.
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Cloning Performance in Real File Systems
In this section, we use a microbenchmark to demonstrate the 
CoW-granularity trade-off in real file systems, and to show that 
BetrFS overcomes this trade-off. We then demonstrate how 
nimble clones can be used to accelerate real applications, such  
as container instantiation.

Dookubench: A Cloning Microbenchmark
To demonstrate the challenges to cloning performance in pro-
duction file systems, we wrote a cloning microbenchmark, which 
we call Dookubench. Like its Star Wars namesake, it makes 
adversarial use of cloning. The benchmark begins by creating a 
directory hierarchy with eight directories, each containing eight 
4-MiB files. Dookubench then proceeds in rounds. In each round, 
it creates a new clone of the original directory hierarchy and 
measures the clone operation’s latency. It then writes 16 bytes to 
a 4 KiB-aligned offset in each newly cloned file—followed by a 
sync—in order to measure the impact of copy-on-write on writes. 
The benchmark then clears the file system caches and greps the 
newly copied directory to measure cloning’s impact on read time. 
Finally, the benchmark records the change in space consumption 
for the whole file system at each step.

We use Dookubench to evaluate cloning performance in Btrfs, 
XFS, ZFS, and BetrFS. All experimental results were collected 
on a Dell Optiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 
4 GiB RAM, and a 500 GB, 7200 RPM SATA disk, with a 4096-

byte block size. The system runs 64-bit Ubuntu 14.04.5. Note 
that only BetrFS supports clones of arbitrary files and directo-
ries. We deal with the limitations of other file systems as follows. 
In Btrfs and XFS, we copy the directory structure in each round 
and use cp --reflink to create clones of all the files. For ZFS, we 
configure the root of the benchmark directory as a sub-volume, 
and use ZFS’s volume snapshotting functionality to perform 
the clone.

The write-granularity trade-off is illustrated clearly in Table 1 
and Figure 1c. XFS uses relatively little space per round, suggest-
ing it is using a small CoW block size. As would be expected of 
a CoW system with a small block size, Figure 1c shows that the 
amount of time required to scan through all the contents of the 
cloned directory degrades with each round of the experiment—
after six clones, the grep time is nearly doubled. There appears to 
be some work that temporarily improves locality, but the degra-
dation trend resumes after more iterations (not shown). 

The Btrfs grep performance is much flatter, but this comes at the 
cost of much larger space usage per clone—Btrfs used an average 
of 176 KiB per clone, compared to 16.3 KiB for BetrFS and 32.6 
KiB for XFS. Furthermore, its performance is not completely 
flat: Btrfs degrades by about 20% during the experiment. After 
17 iterations (not presented for brevity), Btrfs read performance 
degrades by 50% with no indication of leveling off. ZFS is both 
space-inefficient, using 250 KiB per clone, and shows more 
than a 2× degradation in scan performance throughout the 
experiment.

Only BetrFS achieves low space per clone while maintaining 
locality, as shown by its flat performance on the grep benchmark. 
BetrFS uses 16 KiB per clone—half the space of the next-most-
space-efficient file system (XFS)—and its read performance is 
competitive with the much less space-efficient Btrfs.

BetrFS excels at clone creation (Figure 1a) and small random 
writes to clones (Figure 1b). BetrFS’s cloning time is around 60 
ms, which is 33% faster than the closest data point from another 

Table 1: Average change in space usage after each Dookubench round 
(a directory clone followed by small, 4 KiB-aligned modifications to each 
newly cloned file) 

Figure 1: Latency to clone, write, and read as a function of the number of times a directory tree has been cloned. Lower is better for all measures.

FS ∆ KiB/round

Btrfs 176

XFS    32.6

ZFS 250

BetrFS    16.3
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file system (the first clone on XFS) and an order of magnitude 
faster than the worst case for the competition. Furthermore, 
BetrFS ’s clone performance is essentially flat throughout the 
experiment. ZFS also has flat volume-cloning performance, 
but not as flat as BetrFS. Both Btrfs and XFS file-level clone 
latencies, on the other hand, degrade as a function of the number 
of prior clones; after eight iterations, clone latency is roughly 
doubled.

In terms of write costs, the cost to write to a cloned file or volume 
is flat for all file systems, although BetrFS can ingest writes 
8–10× faster. This derives from BetrFS’s write-optimized design.

In total, these results indicate that BetrFS supports a seemingly 
paradoxical combination of performance features: clones are fast 
and space-efficient, and random writes are fast, yet preserve good 
locality for sequential reads. No other file system in our bench-
marks demonstrated this combination of performance strengths, 
and some also showed significant performance declines with 
each additional clone.

Cloning Containers
Linux Containers (LXC) is one of several popular container 
infrastructures that has adopted a number of storage back ends 
in order to optimize container creation. The default back end 
(dir) does an rsync of the component directories into a single, 
chroot-style working directory. The ZFS and Btrfs back ends 
use subvolumes and clones to optimize this process. We wrote a 
BetrFS back end using directory cloning.

Table 2 shows the latency of cloning a default Ubuntu 14.04 con-
tainer using each back end. Container instantiation using clones 
on BetrFS is 3–4× faster than the other cloning back ends, and 
up to two orders of magnitude faster than the rsync-based back 
ends. Interestingly, BetrFS is also the fastest file system using 
the rsync-based back end, beating the next fastest file system 
(Btrfs) by more than 40%.

Nimble Clones in BetrFS
This section overviews the four key techniques BetrFS uses to 
realize nimble clones. The interested reader can find a detailed 
explanation, as well as related work, in our recent FAST ’20  
paper [4].

BetrFS [1, 3] is an in-kernel, local file system built on a key-value 
store (KVstore) substrate. A BetrFS instance keeps two KVstores. 
The metadata KVstore maps full paths (relative to the mount-
point, e.g., /foo/bar/baz) to struct stat structures, and the data 
KVstore maps {full path + block number} keys to 4 KiB blocks.

BetrFS is named for its KVstore data structure, the Bε-tree [1]. 
A Bε-tree is a write-optimized KVstore in the same family of 
data structures as LSM-trees (Log-Structured Merge-tree). 
Like B-tree variants, Bε-trees store key-value pairs in leaves. A 

key feature of the Bε-tree is that interior nodes buffer pending 
mutations to the leaf contents, encoded as messages. Messages 
are inserted into the root of the tree, and, when an interior node’s 
buffer fills with messages, messages are flushed in large batches 
to one or more children’s buffers. Eventually, messages reach the 
leaves and the updates are applied. As a consequence, random 
updates are inexpensive—the Bε-tree effectively logs updates at 
each node. Note that these buffers are bounded in size to a few 
MiB, and buffers are never allowed to grow so large that they 
suffer from common pathologies in a fully log-structured file sys-
tem. And since updates move down the tree in batches, the I/O 
savings grow with the batch size.

A key change needed to share data at rest is to convert the Bε-tree 
into a Bε-Directed Acyclic Graph (DAG). Nodes in the Bε-DAG 
can be shared among multiple paths from the root to a leaf; shar-
ing a sub-graph of the Bε-DAG yields space-efficient clones. So 
far, this is a standard approach to copy-on-write. A nimble design 
is realized with four additional techniques.

Technique 1: Write Optimization. In order to avoid the granu-
larity trade-off of CoW, we use buffers in a Bε-DAG to accumu-
late small writes to a cloned file or directory. The key feature of 
write-optimization that contributes to nimble clones is “pinning” 
messages above a shared node in the Bε-DAG. For example, if we 
clone a large file foo to bar and make a small modification to bar, 
that change is encoded in a message and written into the root of 
the tree, with destination bar. However, this message will not be 
flushed into a shared node in the Bε-DAG, or else it would “leak” 
the change into the original file foo. Holding a small “delta” in the 
parent node is more space efficient than making a full copy for 
a small change, or even copying one leaf node. Instead, we wait 
until enough changes for foo or bar accumulate so that little of 
the remaining content is shared, and then we break that sharing 
by creating two unique, unshared copies of a node and repacking 
the contents, potentially recovering locality. We call this tech-
nique Copy-on-Abundant-Write (CAW).

Back End File System lxc-clone (s)

Dir

ext4 19.514

Btrfs 14.822

ZFS 16.194

XFS 55.104

NILFS2 26.622

BetrFS  8.818 

ZFS ZFS  0.478

Btrfs Btrfs  0.396

BetrFS BetrFS  0.118

Table 2: Latency of cloning a container
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Technique 2: Full-Path Indices. BetrFS maintains inter-file 
locality and supports arbitrary file and directory clones by 
using full-path indexing. BetrFS indexes all files and blocks by 
their full path, and paths are sorted in DFS (depth first search) 
traversal order. This means that all the paths for a sub-tree of 
the directory hierarchy are contiguous in the key space. As a 
result, a DFS traversal of the directory hierarchy will correspond 
to a linear scan of the key-space, which will translate into large 
sequential I/Os, since the BetrFS Bε-tree uses 4 MiB nodes.

Furthermore, this means that cloning an entire sub-tree of the 
directory hierarchy corresponds to cloning a contiguous range  
of keys, all of which have a common prefix.

Technique 3: Lifting. As stated so far, key-value pairs encode 
full pathnames. So nodes or sub-graphs at rest will be shared 
but have incorrect, full-path keys along one of the shared paths. 
In our example above, nodes storing the key-value pairs backing 
bar will initially have foo keys. We observe that cloning a file or 
directory from a to b is essentially duplicating all the key-value 
pairs that start with a to new key-value pairs in which a has been 
replaced by b in each key.

Lifting removes a common prefix from the keys of a node and 
instead stores this prefix along with the pointer and pivot keys 
in the parent. For instance, if an entire Bε-DAG leaf stores key-
value pairs under directory /home/user, this common prefix 
would be removed from each key-value pair in that leaf, and 
instead the prefix is stored once in the parent, retaining only 
“short” pathnames in the child. With lifting, two parents with 
different directory prefixes can share a node, copy-on-write, and 
queries dynamically construct the full-path key based on the 
path taken through the graph to reach a given node.

Technique 4: Lazy Updates. In order to keep latency of a copy 
low, we must batch and amortize the cost of updates. First, we 
create GOTO messages that edit the Bε-DAG itself as they are 
flushed. This is new; previously, all write-optimized dictionaries 
only batched changes to the data, not the data structure itself. 
Specifically, a GOTO message encodes a pointer that adds an 
edge to the graph, redirecting searches for a cloned key range 
to the source of the copy. These messages are flushed down the 
graph in a batch, and eventually become regular edges once they 
reach a target height.

The discussion to this point assumes that a cloned file or direc-
tory happens to be within a proper sub-graph in the Bε-DAG; this 
may not be the case, as nodes in a Bε-DAG do not have the same 
structure as the file system directory tree. Nodes in a Bε-DAG 
pack as many keys (in key order) as needed to reach a target node 
size; thus a node may contain multiple small files packed into a 
4 MiB node or a single 4 MiB chunk of a large file. Rather than 
immediately removing data outside of the cloned range, and 

making a proper sub-graph with the source prefix removed, we 
instead add additional bookkeeping to delay these edits.

Specifically, we augment lifted pointers with translation prefixes, 
which can specify both a prefix substitution for data at rest that 
has not already been handled by lifting and, implicitly, a range of 
keys in a child to ignore. In the example of cloning foo, the root 
of the sub-graph storing foo may also include keys for fii and 
fuu; a filter on the path for bar would specify that any query that 
follows this path should ignore keys without prefix foo. Similarly, 
if the sub-graph for foo has not yet lifted foo out of the children, a 
translation prefix along the path to bar would indicate that, when 
looking in the foo sub-graph, any keys that start with foo should 
be translated to have prefix bar.

Conclusion
This article demonstrates that a variety of file systems opera-
tions are instances of a clone operation, and the available imple-
mentations share the same copy-on-write-induced trade-off. 
This trade-off can be avoided by using write-optimization to 
decouple writes from copies, rendering a cloning implementa-
tion in BetrFS with the nimble performance properties: efficient 
clones, efficient reads, efficient writes, and space efficiency. The 
latency of the clone itself, as well as subsequent writes, are kept 
low by inserting a message into the tree. By making the changes 
in large batches, BetrFS conserves space. As data is copied on 
abundant writes, read locality is preserved and recovered by 
using full-path indexing to repack logically contiguous data into 
large, physically contiguous nodes. This unlocks improvements 
for real applications, such as a 3–4× improvement in LXC con-
tainer cloning time compared to specialized back ends.
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