
A Survey of Patterns for Adapting Smartphone App UIs to Smart
Watches

Zhilan Zhou
The University of North Carolina at Chapel Hill

Chapel Hill, United States

Jian Xu
Stony Brook University

Stony Brook, United States

Aruna Balasubramanian
Stony Brook University

Stony Brook, United States

Donald E. Porter
The University of North Carolina at Chapel Hill

Chapel Hill, United States

ABSTRACT
Wearable devices, such as smart watches and fitness trackers are
growing in popularity, creating a need for application developers
to adapt or extend a UI, typically from a smartphone, onto these de-
vices. Wearables generally have a smaller form factor than a phone;
thus, porting an app to the watch necessarily involves reworking
the UI. An open problem is identifying best practices for adapting
UIs to wearable devices.

This paper contributes a study and data set of the state of practice
in UI adaptation for wearables. We automatically extract UI designs
from a set of 101 popular Android apps that have both a phone and
watch version, and manually label how each UI element, as well
as how screens in the app, are translated from the phone to the
wearable. The paper identifies trends in adaptation strategies and
presents design guidelines.

We expect that the UI adaptation strategies identified in this
paper can have wide-ranging impacts for future research and iden-
tifying best practices in this space, such as grounding future user
studies that evaluate which strategies improve user satisfaction or
automatically adapting UIs.

CCS CONCEPTS
•Human-centered computing→Mobile devices;Ubiquitous
and mobile computing design and evaluation methods.

KEYWORDS
wearable devices; smartphones; smartwatches; dataset; UI design
patterns

ACM Reference Format:
Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter. 2020.
A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches.
In 22nd International Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’20), October 5–8, 2020, Oldenburg, Germany.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3379503.3403564

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7516-0/20/10. . . $15.00
https://doi.org/10.1145/3379503.3403564

1 INTRODUCTION
Smart watches are rapidly growing in popularity. Smart wearables,
including watches, increased almost 9% in 2018 to 125.3 million de-
vices and it is predicted that the market will grow an average of 11%
annually to reach 189.9 million devices in 2022 [26], which makes
wearables be one of the tech industry’s bright spots in next few
years. Smart watches unlock new opportunities for software appli-
cations, both in communicating information to the user, or through
additional sensors that obtain input from the user, such as monitor-
ing heartbeat and temperature for personal health applications, or
gesture tracking for a software tennis coaching application.

A common usage pattern for the first generation of watch apps is
to serve as a companion app to a smartphone [29]. In the companion
app model, an app runs primarily on the user’s smartphone and the
watch presents a subset of the phone’s display. Since smartwatches
have a smaller display than a phone, in to create a companion
app, the app developer must subdivide or rearrange portions of the
phone’s user interface (or UI). The main motivation for this adapta-
tion is to provide a user with an alternate interaction mechanism.
For example, the Spotify music player app adapts a subset of the
controls to the smartwatch, so a user can pause and play a song
from their watch.

Currently, little is understood in terms of best practices for de-
signing a companion app. When each app developer decides to
add smartwatch support, the UI adaptation from the phone to the
watch is done by hand, in an ad hoc manner. Developers lack any
scientifically grounded guidance about which patterns are best for
users, and further lack automation in this adaptation process. There
are a number of ways to subdivide the same UI for a watch, and
which strategy makes the most sense will likely vary depending on
the nature of the app.

A prerequisite for evaluative studies of different adaptation tech-
niques is to have a common vocabulary to describe different adap-
tation strategies. In other words, one cannot even ask the question
of which UI adaptation strategy is best suited for application X,
without a good menu of adaptation strategies to then compare.
Moreover, there is some utility in understanding how common a
given strategy is in practice, regardless of whether this strategy is
best for the app or not.

The primary contribution of this paper is a dataset, similar in
spirit to RICO [7] or Erica [8], and a study of 101 popular Android
smartphone apps and how they are adapted to a smartwatch coun-
terpart. This dataset draws specifically from free watch applications

https://doi.org/10.1145/3379503.3403564
https://doi.org/10.1145/3379503.3403564

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

that are a companion to a phone application, offer non-trivial func-
tionality beyond a simple “watch face”, and that does not require
excessive effort to authenticate an end-user, such as banking ap-
plications. This dataset describes how UI elements on the phone
correspond to the watch UI (or don’t). The paper then identifies
and describes common adaptation strategies, and draws insights
from the trends in which apps use a given strategy.

The contributions of this paper are:

• A data set mapping smartwatch UIs onto smartphone UIs,
drawn from 101 popular apps on the Wear OS Play Store.

• A categorization of the common phone and watch screen
layouts into eight and five patterns, respectively.

• An analysis of the trends and outliers in the dataset. For
instance, we observe that the overwhelming majority of
content screens are mapped one-to-one onto the watch, with
some subsetting of details, whereas navigational features are
the most likely to introduce churn in the UI layout. Similarly,
the importance, not the amount, of content is most likely
to dictate the watch layout; for example, when a list will
not fit on the watch display, this list will either reduce to
summarizing the entries if the list itself is important, or drop
to a fixed display if a few elements are the most important
content.

• Additional design guidelines for developers extending a UI
from a phone to a watch.

This study serves as a key building block for a comparative study
of these strategies in future work. One immediate application of
this work is in automating companion app generation. A recent
framework, called UIWear [29], shows that one can reduce the
effort to create a companion app by only requiring a developer to
specify the UI adaptation design; the rest of the companion app is
generated by the UIWear framework. The design patterns identified
in this paper can likely be used to automatically choose the best
adaptation design, to fully automate the companion app generation.
The dataset in this paper is available at https://oscarlab.github.io/
projects/ui-adaption/, which we hope will accelerate future work
on wearable UI design.

2 PHONE UI LAYOUTS
This section describes common design patterns for phone UI screens.
Note that we use the term display to refer to the graphical output
device of a phone or watch, and use the term screen to refer to the
contents of the display at one point in time. An app’s UI can have
multiple screens. A UI component is a general term, used to refer
to any element that can appear on the user interface. Examples of UI
components include, but are not limited to: an image, a paragraph
of text, or a button containing a text label. A UI design pattern is
defined by the combination and arrangement of components within
the screen.

This section presents both design patterns described in the book
Mobile design pattern gallery [22], which focuses on navigational
patterns, and also presents content-based patterns we observe in
practice.

2.1 Navigation UI Patterns
When all app content does not fit on a single screen, the app needs
to organize navigation among multiple screens. These screens es-
sentially form a graph, with the initial screen as the root of the
graph. Each screen is a node and edges are interactions that transi-
tion to another screen, such as a swipe or a click. The vast majority
of edges, if not all edges, are bidirectional. A screen that follows a
navigational UI pattern primarily serves to organize navigation
among other screens. An app may use multiple different naviga-
tional UI patterns within a hierarchy, such as clicking on a button
in one screen leading to another screen showing a list.

The six UI patterns we adopted from Mobile design pattern
gallery [22] cover almost all navigational UI organizations that
we have observed in practice. There are additional patterns in the
book that are no longer popular in phone apps, such as Cards and
Pie Menus, or that are not suitable for mapping onto a watch, such
as the Toggle Menu that is primarily used in browser apps. The
book also mentions a Tab Menu as a separate pattern distinguished
by the presence of a Bottom Navigations [13]; the Bottom naviga-
tion bar is now sufficiently ubiquitous that we no longer count this
as a separate category. We will talk on the adaption strategies for
several popular UI components including the bottom navigation
bar in § 5.9.

(1) A Springboard, or Launchpad, pattern (Figure 1a) is often
the first screen of the app, and is designed to help the user
navigate to different locations within the app. A Springboard
is typically a set of buttons, which can be either just icons
or icons with text, and these buttons select sub-features of
the app.

(2) A List Menu pattern (Figure 1b) displays all the navigation
destinations to other parts of the app as a list. Each list
item can be represented with icons and/or text. Unlike a
Springboard, the appearance of all items in the List Menu is
uniform.

(3) A Dashboard pattern (Figure 1c) displays detailed informa-
tion at a glance in the form of a list. Unlike a List menu,
each item on a Dashboard may have different styles and may
contain information beyond icons and text. All the items
on a Dashboard follow one another to form a long, vertical
scrolling interface.

(4) A Gallery pattern (Figure 1d) displays dynamic content as a
grid of images. Unlike a Springboard, a Gallery must contain
images from the app’s data, rather than an abstract icon.

(5) A Side Drawer pattern (Figure 1e) is displayed only on a
part of the app screen, and is usually activated by selecting
the Navigation drawer control button in a shortcut bar on
the top of the app (on Android). The navigation destinations
in the Side Drawer are app-wide, usually displayed as a list
of icons and/or text labels.

(6) A Skeuomorphic pattern (Figure 1f) is a digital represen-
tation matching a real-world object or tool, with which the
user can interact to navigate to other destinations in the app.

2.2 Content-based UI Patterns
In addition to navigational patterns discussed above, we observe
that some app screens simply display static or dynamic information.

https://oscarlab.github.io/projects/ui-adaption/
https://oscarlab.github.io/projects/ui-adaption/

A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

Figure 1: Example screenshot from each phone layout pattern. The Accuweather screenshot is edited from the Android Play
Store Page [1].

We categorize them as a content-based UI pattern, organizing
only static or dynamic content, without any navigational compo-
nents. In thinking of the UI as a graph, screens with the content-
based UI patterns are nodes with only one edge. The only way to
navigate to a different screen from a content-based UI screen is to
return to the parent of the current screen. By definition, content-
based patterns are distinct from navigational patterns, and thus,
there are no screens in both categories.

We define two content-based UI patterns:
(1) A static content pattern displays a combination of static

text and/or images. The user can only read the text or see the

images; there is no interactive component beyond swiping
up or down, or returning to the prior screen. For example,
the “about” screen of Runkeeper (Figure 1g) displays static
information, including the “getting started guide” and helpful
tips. Even though the user can close the “about” screen, they
cannot navigate to other destinations from this screen.

(2) An interactive content pattern displays dynamic informa-
tion using a combination of text, images, and interactive com-
ponents that modify the information displayed. The users
can interact with the components using a tap or a sensor. For
example, the D&D Dice app (Figure 1h) has buttons for the

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

user to roll one or more dice; when the user taps a button,
the only update to the screen is to recalculate and display the
points from the roll. In some, this pattern can also overlap
with the skeuomorphic navigational pattern, but without
the navigational destinations.

3 WATCH UI LAYOUTS
In mapping a phone UI with more components onto a smaller watch
UI, one typically either removes some functionality, or breaks up
one screen on the phone into multiple screens on the watch. We
identify four general categories of watch UI patterns in our data
set: List, Scroll, Interactive Card, and Informative Card. These four
categories are determined based on the type of objects (ViewGroup
and View in Android parlance) on the screen. We identify a fifth,
special category of Skeuomorphic layouts, that can only be identi-
fied visually. Each watch UI view falls into precisely one of these
categories, explained below:

• A List (Figure 2a) pattern is comprised of vertically scrollable
components, evenly arranged list items. A list item in this
pattern can be an image, a text label, or a combination of
both. Examples of a List pattern in an app include options
under a “settings” menu or items in a shopping list. In our
data set, more than 90% of these items are clickable.

• A Scroll pattern (Figure 3) is comprised of vertically scrol-
lable components, but not evenly arranged. The height and
visual style of these components can vary widely, and de-
velopers tend to select the Scroll pattern when there is not
as strong of a semantic relationship among the elements as
items under a list. For example, Google Fit uses a Scroll to
include such varied content as today’s goals, heart rate table,
detailed activity statistics, and settings, shown in Figure 3.

• An Interactive Card pattern (Figure 2b) is comprised of
one or more clickable UI components, which can be images
or text. An Interactive Card is not scrollable. One typical
usage of this layout pattern is a music player. There is not
a clear relationship between the use of an Interactive Card
on the watch and any specific phone layout pattern above;
later sections investigate how these patterns are translated
in practice.

• An Informative Card pattern (Figure 2c) is comprised of
one or more non-clickable UI components, and is not scrol-
lable. This layout is typically used solely to display informa-
tion, such as the weather and news. An Informative Card
is similar to the Static Content pattern on the phone, as
both only display non-interactive information. as the only
functionality.

• A Skeuomorphic pattern (Figure 2d) is a special category
that must be identified visually, where the UI mimics a real-
world object or tool. This pattern is similar to a Skeuomor-
phic pattern on the phone. For instance, Figure 2d shows a
compass app, which mimics the appearance of a physical
compass.

4 DATA COLLECTION METHODOLOGY
In order to study the current state of practice in adaptation, we
curated a dataset drawn from 101 Android apps with both a phone

and a watch interface, from 24 app categories. From these apps, we
collect both the view hierarchies of both the phone and watch, as
well as screenshots of each screen, and manually labeled correspon-
dences between individual UI elements. This Section explains how
we compiled the dataset and its contents.

App selection. We select apps with both a watch and phone
counterpart. There is no definitive count of watch applications
on the Wear OS Play Store, but a popular mirror for free apps,
APKMirror, counts roughly 600 free watch apps [3]. Our data set
includes 101 companion apps, roughly 16.8% of this total population.

We selected these apps prioritized by overall popularity from the
“Top Free Apps” chart in Google Play Store. We removed applica-
tions that were simple watch faces, which put app-specific content
on the first “clock” screen of the watch; this was the most popular
category of watch apps by far, so our data set likely covers a large
fraction of the remaining apps. We also dropped apps that required
significant measures to authenticate that the end-user was a real
human and customer, such as banking apps and passwordmanagers.
We did create accounts on free services that required minimal user
validation, such as a working email. Finally, we excluded apps that
simply did not work on our test watch, or that required additional
in-app purchases. We used the Google Nexus 5, Nexus 6 phone, and
Huawei Watch 2 Sport Smartwatch as test platforms.

Capturing Screenshots and XML.We developed a tool, called
UICrawler. UICrawler automatically explores every UI in each
app and captures the screenshot and view hierarchy in XML.

UICrawler leverages the Android testing API, uiautomator [11],
which can automate UI exploration by mimicking user events, such
as clicking and inputting text. UICrawler does a depth-first-search
traversal of all possible UI elements, starting at the initial screen of
the app. During each UI traversal, UICrawler also saves a screenshot
and the corresponding XML file for each UI. In UICrawler, each UI
node maintains a list of child nodes to keep track of exploration
and progress, as well as a parent node pointer for navigating back
up the graph. UICrawler differentiates each UI by assigning each
UI a unique signature, based on the UI class name and each UI’s
navigation path from the root UI.

UICrawler has a limitation that it can only navigate and crawl the
UI on a single device. A screen on one device may only be reachable
via interaction on another device, such as a watch screen that can
only be reached by pressing a button on the phone. Typically this
involves a dialogue on one device advising the user to take an action
on the other device, and this manifests in UICrawler hanging. We
observed about ten instances of this in our set of apps, and manually
collected these interactions. It is possible that more subtle screens
were overlooked in the process. We mitigated this issue by asking
the students who labeled the data (described below) to spend time
using the apps themselves and note any screens that were missing
in the captured data.

At the end of this crawling process, we have an initial dataset
of 716 phone and 310 watch screen captures (pairs of XML and
images).
Labeling Corresponding UI Elements. We then manually la-
beled the design pattern each screenshot follows, according to the
description in §2 and §3. We further identify each UI element that
appears in both a phone and watch UI for the same app.

A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

Figure 2: Example screenshots for four watch patterns.

Figure 3: Screenshots of the scroll interface in Google Fit.
Each red dotted rectangle indicates how much is visible at
one time.

We had a team of three students manually do this categorization,
including labeling outliers that did not follow these patterns or
match in both the phone and watch. Each student was provided
with a computer that had UIAutomatorViewer—a tool within the
Android Studio developing environment that shows how portions of
the app’s XML correspond to portions of the screenshot. In addition
to screenshots, each student was provided with a phone and watch
that they could use to try each app and check whether elements
correspond.

None of the students had any prior experiencewith smartwatches
or Android development. We trained the students on using the
UIAutomatorViewer tool before they start collecting data. On av-
erage, and excluding training time, each student spent around 15

hours labeling these screen captures and UI elements. This plan
was reviewed by our IRB in advance of any work and exempted
from review, as it does not involve human subjects.

Each screenshot and element was labeled by at least two of the
three students, to detect any inconsistencies or subjective disagree-
ments. In the case of a disagreement, we had additional participants
(including senior researchers) review, independently label the items,
and take the majority’s opinion.
Dataset. The resulting dataset first includes a set of labeled pairs
of watch and phone screenshots, where at least one UI element
on the phone appears in the watch screenshot. This results in 140
phone UI screenshots and 165 watch screenshots. There were a
number of reasons that we could not match some phone screens to
watch screens:

• The watch app does not implement any overlapping func-
tionality as the phone app. For example, the watch version
of Bitdefender is actually called “Where is my phone” in the
app list, and works as a button triggering the phone’s alarm
sound to reveal the position of the phone.

• Thewatch and phone apps contain a completely different pre-
sentation of the same information. For example, ViewRanger
has turn-by-turn navigation in the text on its watch app, but
an interactive map on its phone app.

The second part of our dataset is a set of records for each UI
element that appears on both a phone and watch screenshot. Here,
a record consists of the app’s package name, a reference to the
containing phone screenshot and the bounds of the element within
that screen, and a reference to the containing watch screenshot and
the bounds of the element within that screen. The boundary is used
to identify the component within the View hierarchy XML.

In total, the dataset includes 426 unique phone-watch UI compo-
nent pairs. Each app has an average of 4 UI component pairs.

5 UI ADAPTATION PATTERN STUDY
We organize the analysis of our dataset based on the eight phone
UI patterns described in Section 2. For each UI pattern, we describe
both trends and interesting exceptions in how these UIs are adapted
to a watch. Screenshots of the example apps highlighted in this
section can be found in our data set.

In order to create a consistent “look and feel”, Android Wear
Design Guidelines introduce components, visual styles, and inter-
action patterns in an Android wear app. These guidelines do not

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

Phone Pattern Sample Size Adaption Strategy to the watch

Springboard 7 A List(4), an Interactive Card(2), a combination of Scroll and Interactive Cards(1).
List Menu 37 A List(18), one or multiple Cards(14), a Scroll(3), a List with Cards(2).
Dashboard 21 Informative Cards(9), Interactive Crads(7), a List(4), a List and Cards(1).
Gallery 6 A List(4), Interactive Cards(1), a List and an Interactive Card(1).
Side Drawer 5 A List(2), Interactive Cards(2), a List and an Informative Card(1).
Skeuomorphic 6 Skeuomorphic(5), an Interactive Card(1).
Static Content 6 One or more Informative Cards(5), and a Scroll(1).
Interactive Content 52 Interactive Cards(36), an Informative Card(8), a List(4), a List and Cards(4).

Table 1: The UI Adaption Strategies based on each distinct phone UI pattern

specify patterns for realizing a given functionality or for porting
an Android phone app on to a watch. This study addresses this
gap by investigating the design patterns for overall content and
functionality in both phone and watch apps.

The distribution of phone patterns in the dataset is different
from the average distributions of phone patterns because some
patterns are more likely to be mapped on to the watch. Watch
apps tend to display content directly and with fewer navigation
steps than the phone counterpart. In phone apps, it is common
for important content to be reachable from multiple components,
including the Bottom Navigation and Side Drawer; a corresponding
watch app may simplify overall navigation to have one path to the
same content, such as placing it on the initial screen of the app.
As a result, one element on the watch app may take the place of
multiple elements in the phone counterpart, leading to a different
overall distribution.

5.1 Springboard
The Springboard pattern has declined in popularity over the last
several years [22], and our data set only includes seven examples
of the Springboard pattern. The most common watch pattern (four
of seven examples), converts the Springboard to a List pattern on
the watch.

Rather than map all options from a Springboard onto a List, the
remaining apps in our sample map a subset of the phone’s Spring-
board to other patterns on the watch (two to an Interactive Card
and one to a combination of Scroll and Interactive Card). These apps
place the features that are likely to be accessed on the watch in a
more prominent position. For example, in the Runkeeper phone app,
the button to start an exercise appears in a Springboard with op-
tions such as Activity, Music, and Statistics. On the watch, however,
this start button is mapped separately in an Interactive card with
easier access, on the assumption that users will more commonly
use their watch to start and stop a workout than to view statistics.
As another example, Google Fit also moves the “Start activity” to a
separate Interactive Card, placing other options (“Add goal”, “Add
activity”, “Start activity”, “Log your weight”) in a separate, Scroll
pattern.

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

Phone Pattern Sample Size Adaption Strategy to the watch

Springboard 7 A List(4), an Interactive Card(2), a combination of Scroll and Interactive Cards(1).
List Menu 37 A List(18), one or multiple Cards(14), a Scroll(3), a List with Cards(2).
Dashboard 21 Informative Cards(9), Interactive Crads(7), a List(4), a List and Cards(1).
Gallery 6 A List(4), Interactive Cards(1), a List and an Interactive Card(1).
Side Drawer 5 A List(2), Interactive Cards(2), a List and an Informative Card(1).
Skeuomorphic 6 Skeuomorphic(5), an Interactive Card(1).
Static Content 6 One or more Informative Cards(5), and a Scroll(1).
Interactive Content 52 Interactive Cards(36), an Informative Card(8), a List(4), a List and Cards(4).

Table 1: The UI Adaption Strategies based on each distinct phone UI pattern

specify patterns for realizing a given functionality or for porting
an Android phone app on to a watch. This study addresses this
gap by investigating the design patterns for overall content and
functionality in both phone and watch apps.

The distribution of phone patterns in the dataset is different
from the average distributions of phone patterns because some
patterns are more likely to be mapped on to the watch. Watch
apps tend to display content directly and with fewer navigation
steps than the phone counterpart. In phone apps, it is common
for important content to be reachable from multiple components,
including the Bottom Navigation and Side Drawer; a corresponding
watch app may simplify overall navigation to have one path to the
same content, such as placing it on the initial screen of the app.
As a result, one element on the watch app may take the place of
multiple elements in the phone counterpart, leading to a different
overall distribution.

5.1 Springboard
The Springboard pattern has declined in popularity over the last
several years [22], and our data set only includes seven examples
of the Springboard pattern. The most common watch pattern (four
of seven examples), converts the Springboard to a List pattern on
the watch.

Rather than map all options from a Springboard onto a List, the
remaining apps in our sample map a subset of the phone’s Spring-
board to other patterns on the watch (two to an Interactive Card
and one to a combination of Scroll and Interactive Card). These apps
place the features that are likely to be accessed on the watch in a
more prominent position. For example, in the Runkeeper phone app,
the button to start an exercise appears in a Springboard with op-
tions such as Activity, Music, and Statistics. On the watch, however,
this start button is mapped separately in an Interactive card with
easier access, on the assumption that users will more commonly
use their watch to start and stop a workout than to view statistics.
As another example, Google Fit also moves the “Start activity” to a
separate Interactive Card, placing other options (“Add goal”, “Add
activity”, “Start activity”, “Log your weight”) in a separate, Scroll
pattern.

The first screen on the app, both phone and watch, typically
includes the most important content. The decision about subset-
ting content on the watch is driven by the relative importance
or utility of each item.

5.2 List Menu
Our dataset includes 37 phone screenshots that use the List Menu
pattern. As with the Springboard, the relative importance of items
drives how the List Menu is mapped to the watch, which can legibly
display only a few items at a time.

About half (18) of these samples map to a single List pattern on
the watch. In general, the list contents are identical on the phone
and watch, except when the list on the phone includes a preview of
its content; on the watch, this preview is removed, as it is usually
too small to see.

An additional 14 phone screenshots map onto one or more Cards
on the watch. These samples are evenly split between Informative
and Interactive cards, and this correlates with static versus dynamic
content, respectively. There is no clear trend in whether the devel-
oper selects a List or a set of cards. An example of the list-to-card
strategy comes from Sports Tracker. The UI on the phone shows
a list of past activities, with detailed statistics directly embedded
in the list item, including time, distance and speed; one can click
on a list item to see additional details about that activity, like the
actual running route on the map. When this list item mapped to
the watch, the designers used an Informative Card pattern to show
these detailed data on one card. Mapping to an Informative Card
combines the list item and its detailed page together, while dropping
less important content on the watch.

The more interesting exceptions are cases where it seems that
the designers wished to break the uniform presentation of a list to
draw attention to more important design elements, such as the most
recent note or most frequently used item. There are three cases
in our dataset where a List Menu is replaced with a Scroll on the
watch, and two cases where a List Menu on the phone is mapped
onto a combination of a List with one or multiple Interactive Cards
on the watch. in a related list. For example, Pandora creates a single
List Menu for both tabs showing my stations and browsing others,
as well as then showing with the full list of stations below; on the
watch, they separate the first tabs to two Interactive Cards, and
the station list remains a separate List on the watch. Users need to
change between Cards to reach different music station lists.

Lists on the phone are typically mapped to Lists or a set of
Cards on the watch. Cards give the developer more flexibility
to display content non-uniformly, such as for emphasis or to
provide different levels of detail in different items.

5.2 List Menu
Our dataset includes 37 phone screenshots that use the List Menu
pattern. As with the Springboard, the relative importance of items
drives how the List Menu is mapped to the watch, which can legibly
display only a few items at a time.

About half (18) of these samples map to a single List pattern on
the watch. In general, the list contents are identical on the phone
and watch, except when the list on the phone includes a preview of
its content; on the watch, this preview is removed, as it is usually
too small to see.

An additional 14 phone screenshots map onto one or more Cards
on the watch. These samples are evenly split between Informative
and Interactive cards, and this correlates with static versus dynamic
content, respectively. There is no clear trend in whether the devel-
oper selects a List or a set of cards. An example of the list-to-card
strategy comes from Sports Tracker. The UI on the phone shows
a list of past activities, with detailed statistics directly embedded
in the list item, including time, distance and speed; one can click
on a list item to see additional details about that activity, like the
actual running route on the map. When this list item mapped to
the watch, the designers used an Informative Card pattern to show
these detailed data on one card. Mapping to an Informative Card
combines the list item and its detailed page together, while dropping
less important content on the watch.

The more interesting exceptions are cases where it seems that
the designers wished to break the uniform presentation of a list to
draw attention to more important design elements, such as the most
recent note or most frequently used item. There are three cases
in our dataset where a List Menu is replaced with a Scroll on the
watch, and two cases where a List Menu on the phone is mapped
onto a combination of a List with one or multiple Interactive Cards
on the watch. in a related list. For example, Pandora creates a single
List Menu for both tabs showing my stations and browsing others,
as well as then showing with the full list of stations below; on the
watch, they separate the first tabs to two Interactive Cards, and
the station list remains a separate List on the watch. Users need to
change between Cards to reach different music station lists.

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

Phone Pattern Sample Size Adaption Strategy to the watch

Springboard 7 A List(4), an Interactive Card(2), a combination of Scroll and Interactive Cards(1).
List Menu 37 A List(18), one or multiple Cards(14), a Scroll(3), a List with Cards(2).
Dashboard 21 Informative Cards(9), Interactive Crads(7), a List(4), a List and Cards(1).
Gallery 6 A List(4), Interactive Cards(1), a List and an Interactive Card(1).
Side Drawer 5 A List(2), Interactive Cards(2), a List and an Informative Card(1).
Skeuomorphic 6 Skeuomorphic(5), an Interactive Card(1).
Static Content 6 One or more Informative Cards(5), and a Scroll(1).
Interactive Content 52 Interactive Cards(36), an Informative Card(8), a List(4), a List and Cards(4).

Table 1: The UI Adaption Strategies based on each distinct phone UI pattern

specify patterns for realizing a given functionality or for porting
an Android phone app on to a watch. This study addresses this
gap by investigating the design patterns for overall content and
functionality in both phone and watch apps.

The distribution of phone patterns in the dataset is different
from the average distributions of phone patterns because some
patterns are more likely to be mapped on to the watch. Watch
apps tend to display content directly and with fewer navigation
steps than the phone counterpart. In phone apps, it is common
for important content to be reachable from multiple components,
including the Bottom Navigation and Side Drawer; a corresponding
watch app may simplify overall navigation to have one path to the
same content, such as placing it on the initial screen of the app.
As a result, one element on the watch app may take the place of
multiple elements in the phone counterpart, leading to a different
overall distribution.

5.1 Springboard
The Springboard pattern has declined in popularity over the last
several years [22], and our data set only includes seven examples
of the Springboard pattern. The most common watch pattern (four
of seven examples), converts the Springboard to a List pattern on
the watch.

Rather than map all options from a Springboard onto a List, the
remaining apps in our sample map a subset of the phone’s Spring-
board to other patterns on the watch (two to an Interactive Card
and one to a combination of Scroll and Interactive Card). These apps
place the features that are likely to be accessed on the watch in a
more prominent position. For example, in the Runkeeper phone app,
the button to start an exercise appears in a Springboard with op-
tions such as Activity, Music, and Statistics. On the watch, however,
this start button is mapped separately in an Interactive card with
easier access, on the assumption that users will more commonly
use their watch to start and stop a workout than to view statistics.
As another example, Google Fit also moves the “Start activity” to a
separate Interactive Card, placing other options (“Add goal”, “Add
activity”, “Start activity”, “Log your weight”) in a separate, Scroll
pattern.

The first screen on the app, both phone and watch, typically
includes the most important content. The decision about subset-
ting content on the watch is driven by the relative importance
or utility of each item.

5.2 List Menu
Our dataset includes 37 phone screenshots that use the List Menu
pattern. As with the Springboard, the relative importance of items
drives how the List Menu is mapped to the watch, which can legibly
display only a few items at a time.

About half (18) of these samples map to a single List pattern on
the watch. In general, the list contents are identical on the phone
and watch, except when the list on the phone includes a preview of
its content; on the watch, this preview is removed, as it is usually
too small to see.

An additional 14 phone screenshots map onto one or more Cards
on the watch. These samples are evenly split between Informative
and Interactive cards, and this correlates with static versus dynamic
content, respectively. There is no clear trend in whether the devel-
oper selects a List or a set of cards. An example of the list-to-card
strategy comes from Sports Tracker. The UI on the phone shows
a list of past activities, with detailed statistics directly embedded
in the list item, including time, distance and speed; one can click
on a list item to see additional details about that activity, like the
actual running route on the map. When this list item mapped to
the watch, the designers used an Informative Card pattern to show
these detailed data on one card. Mapping to an Informative Card
combines the list item and its detailed page together, while dropping
less important content on the watch.

The more interesting exceptions are cases where it seems that
the designers wished to break the uniform presentation of a list to
draw attention to more important design elements, such as the most
recent note or most frequently used item. There are three cases
in our dataset where a List Menu is replaced with a Scroll on the
watch, and two cases where a List Menu on the phone is mapped
onto a combination of a List with one or multiple Interactive Cards
on the watch. in a related list. For example, Pandora creates a single
List Menu for both tabs showing my stations and browsing others,
as well as then showing with the full list of stations below; on the
watch, they separate the first tabs to two Interactive Cards, and
the station list remains a separate List on the watch. Users need to
change between Cards to reach different music station lists.

Lists on the phone are typically mapped to Lists or a set of
Cards on the watch. Cards give the developer more flexibility
to display content non-uniformly, such as for emphasis or to
provide different levels of detail in different items.

A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

5.3 Dashboard
In our dataset, 21 phone screens use the Dashboard pattern, and
this is typically the first screen on both the phone app and watch
app. The most visually similar watch pattern is a Scroll; to our sur-
prise, none of our samples implemented this mapping. We suspect
the reason for this is that it is easy for a Scroll to become very
long and unwieldy for users—undermining the goal of collecting
key information in a single, curated screen. Across these patterns,
more than three-fourths of these watch apps reduce the amount of
content in adapting the Dashboard for the watch.

We found that most instances of the Dashboard on the phone
were mapped to a single or multiple cards on the watch. On the
phone, one Dashboard component usually occupies at least one-
fourth of the display and shows detailed information. To realize
the same functionality on the watch, the whole watch screen is
typically used to display the same amount of information. Thus,
an Informative card is the most popular pattern with nine samples
used to translate a phone dashboard onto a watch. For the same
reasons, another seven of the samples use an Interactive card to
display dynamic elements. In terms of subsetting contents, if all of
the phone’s content will not fit on the watch screen, lower-priority
content is dropped.

Four samples in our dataset turn a Dashboard into a List on
the watch. In general, these were cases where one could use as
easily to present the same content as a List Menu pattern on the
phone, and, we suspect, there was less need to prioritize certain UI
elements, but rather to display a summarized list. In some cases,
the list may become less detailed so that more items can fit on a
single watch screen without scrolling. For instance, in Space Launch
Now, only spacecraft category, name, launch date, and location are
mapped to watch. Other information that appears in the phone’s
Dashboard is not present on the watch, so that the user can see
multiple spacecrafts launch information displayed in a List pattern.

Finally, Accuweather is a single case of mapping a Dashboard to
a List and Cards. The phone version shows all important weather
information (current weather, daily forecast, etc.) in a Dashboard,
but the watch version uses a List for the daily forecast and an
Informative Card for current weather and other information.

A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

5.3 Dashboard
In our dataset, 21 phone screens use the Dashboard pattern, and
this is typically the first screen on both the phone app and watch
app. The most visually similar watch pattern is a Scroll; to our sur-
prise, none of our samples implemented this mapping. We suspect
the reason for this is that it is easy for a Scroll to become very
long and unwieldy for users—undermining the goal of collecting
key information in a single, curated screen. Across these patterns,
more than three-fourths of these watch apps reduce the amount of
content in adapting the Dashboard for the watch.

We found that most instances of the Dashboard on the phone
were mapped to a single or multiple cards on the watch. On the
phone, one Dashboard component usually occupies at least one-
fourth of the display and shows detailed information. To realize
the same functionality on the watch, the whole watch screen is
typically used to display the same amount of information. Thus,
an Informative card is the most popular pattern with nine samples
used to translate a phone dashboard onto a watch. For the same
reasons, another seven of the samples use an Interactive card to
display dynamic elements. In terms of subsetting contents, if all of
the phone’s content will not fit on the watch screen, lower-priority
content is dropped.

Four samples in our dataset turn a Dashboard into a List on
the watch. In general, these were cases where one could use as
easily to present the same content as a List Menu pattern on the
phone, and, we suspect, there was less need to prioritize certain UI
elements, but rather to display a summarized list. In some cases,
the list may become less detailed so that more items can fit on a
single watch screen without scrolling. For instance, in Space Launch
Now, only spacecraft category, name, launch date, and location are
mapped to watch. Other information that appears in the phone’s
Dashboard is not present on the watch, so that the user can see
multiple spacecrafts launch information displayed in a List pattern.

Finally, Accuweather is a single case of mapping a Dashboard to
a List and Cards. The phone version shows all important weather
information (current weather, daily forecast, etc.) in a Dashboard,
but the watch version uses a List for the daily forecast and an
Informative Card for current weather and other information.

Dashboards on the phone typically store the most important
content in one screen. The most common watch mapping is to
one or more cards. Three-fourths of watch apps subset content
based on importance to fit a smaller display.

5.4 Gallery
Our dataset includes 6 phone screens that follow the Gallery pattern.
Recall that a Gallery includes a grid of larger images (not simple
icons); at most, one larger image will display well on a watch form
factor, these images will often be illegible in a list or grid.

Four of the samples are mapped to a List pattern on the watch,
and one to the Interactive Card pattern. When the images are
mapped to different Cards, they cannot be larger, meaning that
the preview Card and the actual content are the same on a watch.
As a result, Galleries are more often mapped to Lists.

When a Gallery pattern is mapped to a List, the text under the
image on the phone often becomes the list items on the watch,

rather than the images. On the phone, Streamago uses a Gallery
to list current streaming users and show options including “Go
Live”; on the watch, this is mapped to a single Interactive Card that
only shows the options, but no user images. Since users cannot
watch live streams on their watches, the watch app acts more like
a controller for the phone.

The final example, Google Keep, adopts a mixture of a List and
Interactive Cards. The phone app uses a Gallery pattern to show
all notes a user created, resized to fit the column width. Unless the
note is longer than the screen length, a user can typically see the
whole content of a note. In the watch version, this screen becomes
a List to show all of the notes, but with a limited preview area
where users can only see the first line of the note. Keep also uses
an Interactive Card for creating new notes, but with fewer note
categories than those on the phone. To fit a smaller display, Keep
removes options like “drawing freely” on its watch version.

Galleries are not a good fit for watches, as there is simply not
adequate screen area to give a visual overview of content. Adap-
tation strategies vary widely, based on the functionality of the
screen and app. For instance, a control interface is more likely
to use text in a list, whereas a content display may use a series
of cards including images.

5.5 Side Drawer
A Side Drawer pattern is visually similar to a List Menu pattern,
but helps the user navigate among screens in an app. Side Drawers
are usually not the primary navigation interface for the whole app,
but rather, serve in a secondary, shortcut role. In translating a Side
Drawer to a watch, however, this screen often becomes the primary
navigation mechanism. Our dataset has five sample phone screens.

Two of these samples map onto a List on the watch. Mapping a
Side Drawer to a List is similar to mapping a List Menu on the phone
to a List on the watch, but without removing any data from the
original UI. For example, in the Bring! app, the Side Drawer contains
user-created shopping lists, as well as an editing UI with different
kinds of shopping items. However, on the companion watch app,
the first screen users see is a List containing all of their shopping
lists. This change in navigation experience, from a secondary menu
to the primary screen, also matches the typical use of this app: users
often create shopping lists on their phone, and then check on the
watch while in the store.

Two of the samples map onto a set of Interactive Cards. In these
examples, the navigational content remains secondary—users do
not see these cards when they launch the app, but they are brought
up by swiping down. The Interactive Card that is brought up retains
the same content as on the phone, and each option leads to another
part of the app. This pattern of using a special gesture to bring
up an Interactive Card most closely approximates the Side Drawer
pattern.

The fifth screen, from Google Keep, uses a combination of a List
and an Informative Card. In the phone app, a user can switch among
multiple accounts by just tapping on the avatars on the top of the
Side Drawer. However, a user can only see the current account first
on a Card in the watch app. By tapping it, the user will see the
switch account menu showing in a List.

5.4 Gallery
Our dataset includes 6 phone screens that follow the Gallery pattern.
Recall that a Gallery includes a grid of larger images (not simple
icons); at most, one larger image will display well on a watch form
factor, these images will often be illegible in a list or grid.

Four of the samples are mapped to a List pattern on the watch,
and one to the Interactive Card pattern. When the images are
mapped to different Cards, they cannot be larger, meaning that
the preview Card and the actual content are the same on a watch.
As a result, Galleries are more often mapped to Lists.

When a Gallery pattern is mapped to a List, the text under the
image on the phone often becomes the list items on the watch,

rather than the images. On the phone, Streamago uses a Gallery
to list current streaming users and show options including “Go
Live”; on the watch, this is mapped to a single Interactive Card that
only shows the options, but no user images. Since users cannot
watch live streams on their watches, the watch app acts more like
a controller for the phone.

The final example, Google Keep, adopts a mixture of a List and
Interactive Cards. The phone app uses a Gallery pattern to show
all notes a user created, resized to fit the column width. Unless the
note is longer than the screen length, a user can typically see the
whole content of a note. In the watch version, this screen becomes
a List to show all of the notes, but with a limited preview area
where users can only see the first line of the note. Keep also uses
an Interactive Card for creating new notes, but with fewer note
categories than those on the phone. To fit a smaller display, Keep
removes options like “drawing freely” on its watch version.

A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

5.3 Dashboard
In our dataset, 21 phone screens use the Dashboard pattern, and
this is typically the first screen on both the phone app and watch
app. The most visually similar watch pattern is a Scroll; to our sur-
prise, none of our samples implemented this mapping. We suspect
the reason for this is that it is easy for a Scroll to become very
long and unwieldy for users—undermining the goal of collecting
key information in a single, curated screen. Across these patterns,
more than three-fourths of these watch apps reduce the amount of
content in adapting the Dashboard for the watch.

We found that most instances of the Dashboard on the phone
were mapped to a single or multiple cards on the watch. On the
phone, one Dashboard component usually occupies at least one-
fourth of the display and shows detailed information. To realize
the same functionality on the watch, the whole watch screen is
typically used to display the same amount of information. Thus,
an Informative card is the most popular pattern with nine samples
used to translate a phone dashboard onto a watch. For the same
reasons, another seven of the samples use an Interactive card to
display dynamic elements. In terms of subsetting contents, if all of
the phone’s content will not fit on the watch screen, lower-priority
content is dropped.

Four samples in our dataset turn a Dashboard into a List on
the watch. In general, these were cases where one could use as
easily to present the same content as a List Menu pattern on the
phone, and, we suspect, there was less need to prioritize certain UI
elements, but rather to display a summarized list. In some cases,
the list may become less detailed so that more items can fit on a
single watch screen without scrolling. For instance, in Space Launch
Now, only spacecraft category, name, launch date, and location are
mapped to watch. Other information that appears in the phone’s
Dashboard is not present on the watch, so that the user can see
multiple spacecrafts launch information displayed in a List pattern.

Finally, Accuweather is a single case of mapping a Dashboard to
a List and Cards. The phone version shows all important weather
information (current weather, daily forecast, etc.) in a Dashboard,
but the watch version uses a List for the daily forecast and an
Informative Card for current weather and other information.

Dashboards on the phone typically store the most important
content in one screen. The most common watch mapping is to
one or more cards. Three-fourths of watch apps subset content
based on importance to fit a smaller display.

5.4 Gallery
Our dataset includes 6 phone screens that follow the Gallery pattern.
Recall that a Gallery includes a grid of larger images (not simple
icons); at most, one larger image will display well on a watch form
factor, these images will often be illegible in a list or grid.

Four of the samples are mapped to a List pattern on the watch,
and one to the Interactive Card pattern. When the images are
mapped to different Cards, they cannot be larger, meaning that
the preview Card and the actual content are the same on a watch.
As a result, Galleries are more often mapped to Lists.

When a Gallery pattern is mapped to a List, the text under the
image on the phone often becomes the list items on the watch,

rather than the images. On the phone, Streamago uses a Gallery
to list current streaming users and show options including “Go
Live”; on the watch, this is mapped to a single Interactive Card that
only shows the options, but no user images. Since users cannot
watch live streams on their watches, the watch app acts more like
a controller for the phone.

The final example, Google Keep, adopts a mixture of a List and
Interactive Cards. The phone app uses a Gallery pattern to show
all notes a user created, resized to fit the column width. Unless the
note is longer than the screen length, a user can typically see the
whole content of a note. In the watch version, this screen becomes
a List to show all of the notes, but with a limited preview area
where users can only see the first line of the note. Keep also uses
an Interactive Card for creating new notes, but with fewer note
categories than those on the phone. To fit a smaller display, Keep
removes options like “drawing freely” on its watch version.

Galleries are not a good fit for watches, as there is simply not
adequate screen area to give a visual overview of content. Adap-
tation strategies vary widely, based on the functionality of the
screen and app. For instance, a control interface is more likely
to use text in a list, whereas a content display may use a series
of cards including images.

5.5 Side Drawer
A Side Drawer pattern is visually similar to a List Menu pattern,
but helps the user navigate among screens in an app. Side Drawers
are usually not the primary navigation interface for the whole app,
but rather, serve in a secondary, shortcut role. In translating a Side
Drawer to a watch, however, this screen often becomes the primary
navigation mechanism. Our dataset has five sample phone screens.

Two of these samples map onto a List on the watch. Mapping a
Side Drawer to a List is similar to mapping a List Menu on the phone
to a List on the watch, but without removing any data from the
original UI. For example, in the Bring! app, the Side Drawer contains
user-created shopping lists, as well as an editing UI with different
kinds of shopping items. However, on the companion watch app,
the first screen users see is a List containing all of their shopping
lists. This change in navigation experience, from a secondary menu
to the primary screen, also matches the typical use of this app: users
often create shopping lists on their phone, and then check on the
watch while in the store.

Two of the samples map onto a set of Interactive Cards. In these
examples, the navigational content remains secondary—users do
not see these cards when they launch the app, but they are brought
up by swiping down. The Interactive Card that is brought up retains
the same content as on the phone, and each option leads to another
part of the app. This pattern of using a special gesture to bring
up an Interactive Card most closely approximates the Side Drawer
pattern.

The fifth screen, from Google Keep, uses a combination of a List
and an Informative Card. In the phone app, a user can switch among
multiple accounts by just tapping on the avatars on the top of the
Side Drawer. However, a user can only see the current account first
on a Card in the watch app. By tapping it, the user will see the
switch account menu showing in a List.

5.5 Side Drawer
A Side Drawer pattern is visually similar to a List Menu pattern,
but helps the user navigate among screens in an app. Side Drawers
are usually not the primary navigation interface for the whole app,
but rather, serve in a secondary, shortcut role. In translating a Side
Drawer to a watch, however, this screen often becomes the primary
navigation mechanism. Our dataset has five sample phone screens.

Two of these samples map onto a List on the watch. Mapping a
Side Drawer to a List is similar to mapping a List Menu on the phone
to a List on the watch, but without removing any data from the
original UI. For example, in the Bring! app, the Side Drawer contains
user-created shopping lists, as well as an editing UI with different
kinds of shopping items. However, on the companion watch app,
the first screen users see is a List containing all of their shopping
lists. This change in navigation experience, from a secondary menu
to the primary screen, also matches the typical use of this app: users
often create shopping lists on their phone, and then check on the
watch while in the store.

Two of the samples map onto a set of Interactive Cards. In these
examples, the navigational content remains secondary—users do
not see these cards when they launch the app, but they are brought
up by swiping down. The Interactive Card that is brought up retains
the same content as on the phone, and each option leads to another
part of the app. This pattern of using a special gesture to bring
up an Interactive Card most closely approximates the Side Drawer
pattern.

The fifth screen, from Google Keep, uses a combination of a List
and an Informative Card. In the phone app, a user can switch among
multiple accounts by just tapping on the avatars on the top of the
Side Drawer. However, a user can only see the current account first
on a Card in the watch app. By tapping it, the user will see the
switch account menu showing in a List.

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. PorterMobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

The side drawer pattern on the phone often moves from a sec-
ondary to a primary navigation role on the watch, and is often
approximated with a special icon or gesture, such as swiping
down from the top.

5.6 Skeuomorphic
Our dataset includes 6 phone screens that follow the Skeuomorphic
pattern. Five of these directly map onto a similar, Skeuomorphic
pattern on the watch. One of these, Compass2D, also adds a new
Informative Card containing current position information in text,
in addition to a skeuomorphic compass showing on the watch.

The exception is a case where the original object does not fit
within the watch display. Specifically, the app SchoolBell, which
emulates a school bell on the phone following a skeuomorphic
pattern, is converted to a simple button in an Interactive Card on
the watch.

Skeuomorphic designs tend to be directly adopted on the watch,
provided they fit in the form factor.

5.7 Static Content
The dataset includes six phone screens following the Static Content
pattern. Five of them turn into one or more Informative Cards, and
one is converted to a Scroll. The app Woman Bible uses a Scroll
pattern to show the book’s text. In other cases, a typical content
that will be mapped from a Static Content to an Informative Card is
a QR Code. In our dataset, the Business Card app actually mapped
the QR Code on the business card it displays on the phone to the
watch. Though not included in our dataset, we note this use of
QR codes in an Informative Card is common in digital payment
services, such as in the Alipay app.

5.8 Interactive Content
Our dataset contains 52 phone screens with Interactive Content.
About three-fourths are mapped to a watch screen following the
Interactive Card pattern. Five of them are a music player interface
on both the phone and watch. We notice that Google provides a
music player template in an Interactive Card for developers and
in practice, all player apps use this template in their watch apps.
Further, eight screens become an Informative Card, four are mapped
to a List, and four are mapped to a List and Cards.

Mapping Interactive Content pattern to a List usually means
that the designer creates a new navigation for the current contents.
The Runmore 5K Trainer app shows the “start activity” button, a
time indicator, and tabs containing the number of days on its phone
app, but maps only the numbers of days on its watch version and
each could start activity immediately. Sometimes new navigation
options are derived by the watch itself. In app Ride with GPS, the
“start a ride” button on the phone is mapped to a List containing
two options “Start Ride on Phone” or “Start Ride on Watch”.

There are examples where functionality is not subset, but Inter-
active Content is divided into multiple screens. For instance, the
Vivint app on the phone has an Interactive Content with both a text
message indicating the state of the home alarm and multiple sliders
to open/close doors. The watch version places the text message in
an Informative Card and the door controls in a different List.

5.9 Special Components
Most phone app UIs include special components, including a top
and bottom bar.

A bottom navigation bar typically includes icons for quick nav-
igation to major functionality in the app [13], and are present in
most apps. An app typically has only one bottom navigation bar,
which is the same across most of the screens. In Google’s Wear
OS Anatomy, there is a navigation drawer component that serves a
similar purpose, although it is not visible by default—users need to
perform a swiping down gesture to show the bar. In our dataset, in
most cases a bottom navigation bar on the phone is mapped to a
navigation drawer on the watch.

A floating action button performs the primary, or most common,
action on a screen [15], such as drafting a new email in an email
app. It appears in front of all screen content, typically as a circular
shape with an icon in its center. Typically, a screen only has one
floating action button. In our dataset, a floating action button is
typically mapped to a single Interactive Card when it is on the
opening screen on the phone. This is because such primary action
is usually accessed most frequently on the watch as well. If it is
not mapped to a Card separately, it is usually mapped to an inline
action button on the top of the content view.

A top app bar [12] generally includes contents related to the
current screen. The developer typically places branding, screen
titles, navigation, and actions in the top app bar. Although a top app
bar is an important component of an app on the phone, components
in a top app bar are usually not mapped to the watch. When visual
space is at a premium many of these components can be removed,
and essential, contextual actions are instead added to the content
view.

5.10 Mapping Phone Screens Onto Watch
Screens

Because the watch has a smaller form factor than the phone, a
significant number of phone screens do not have a one-to-one
mapping to a watch screen; content may be subsetted, or one phone
screen is divided into multiple watch screens. In practice, we find
that there are three kinds of mappings between phone and watch
screens:

• One phone screen to one watch screen (103 cases, 82%). This
result matches our expectation that designers most com-
monly choose to map a single phone UI to 1 or more watch
UIs, picking a subset of UI components from the phone UI.
An important caveat is that some phone UIs are mapped
onto multiple watch screens, where multiple watch List or
Scroll screens are composed to form a single, scrollable list,
transparently to the user. As long as these are the same logi-
cal list or scroll (i.e., users can access all of these screens by
swiping up or down), we treat this as a one-to-one mapping.
This happens most commonly when adapting the first screen
of the phone app, and the first screen is mostly navigational
elements.

• One phone screen to multiple watch screens (20 cases, 16%).
In 16 of these cases, the original phone screen is a Naviga-
tional UI. On the phone, these navigation screens tend to

5.6 Skeuomorphic
Our dataset includes 6 phone screens that follow the Skeuomorphic
pattern. Five of these directly map onto a similar, Skeuomorphic
pattern on the watch. One of these, Compass2D, also adds a new
Informative Card containing current position information in text,
in addition to a skeuomorphic compass showing on the watch.

The exception is a case where the original object does not fit
within the watch display. Specifically, the app SchoolBell, which
emulates a school bell on the phone following a skeuomorphic
pattern, is converted to a simple button in an Interactive Card on
the watch.

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

The side drawer pattern on the phone often moves from a sec-
ondary to a primary navigation role on the watch, and is often
approximated with a special icon or gesture, such as swiping
down from the top.

5.6 Skeuomorphic
Our dataset includes 6 phone screens that follow the Skeuomorphic
pattern. Five of these directly map onto a similar, Skeuomorphic
pattern on the watch. One of these, Compass2D, also adds a new
Informative Card containing current position information in text,
in addition to a skeuomorphic compass showing on the watch.

The exception is a case where the original object does not fit
within the watch display. Specifically, the app SchoolBell, which
emulates a school bell on the phone following a skeuomorphic
pattern, is converted to a simple button in an Interactive Card on
the watch.

Skeuomorphic designs tend to be directly adopted on the watch,
provided they fit in the form factor.

5.7 Static Content
The dataset includes six phone screens following the Static Content
pattern. Five of them turn into one or more Informative Cards, and
one is converted to a Scroll. The app Woman Bible uses a Scroll
pattern to show the book’s text. In other cases, a typical content
that will be mapped from a Static Content to an Informative Card is
a QR Code. In our dataset, the Business Card app actually mapped
the QR Code on the business card it displays on the phone to the
watch. Though not included in our dataset, we note this use of
QR codes in an Informative Card is common in digital payment
services, such as in the Alipay app.

5.8 Interactive Content
Our dataset contains 52 phone screens with Interactive Content.
About three-fourths are mapped to a watch screen following the
Interactive Card pattern. Five of them are a music player interface
on both the phone and watch. We notice that Google provides a
music player template in an Interactive Card for developers and
in practice, all player apps use this template in their watch apps.
Further, eight screens become an Informative Card, four are mapped
to a List, and four are mapped to a List and Cards.

Mapping Interactive Content pattern to a List usually means
that the designer creates a new navigation for the current contents.
The Runmore 5K Trainer app shows the “start activity” button, a
time indicator, and tabs containing the number of days on its phone
app, but maps only the numbers of days on its watch version and
each could start activity immediately. Sometimes new navigation
options are derived by the watch itself. In app Ride with GPS, the
“start a ride” button on the phone is mapped to a List containing
two options “Start Ride on Phone” or “Start Ride on Watch”.

There are examples where functionality is not subset, but Inter-
active Content is divided into multiple screens. For instance, the
Vivint app on the phone has an Interactive Content with both a text
message indicating the state of the home alarm and multiple sliders
to open/close doors. The watch version places the text message in
an Informative Card and the door controls in a different List.

5.9 Special Components
Most phone app UIs include special components, including a top
and bottom bar.

A bottom navigation bar typically includes icons for quick nav-
igation to major functionality in the app [13], and are present in
most apps. An app typically has only one bottom navigation bar,
which is the same across most of the screens. In Google’s Wear
OS Anatomy, there is a navigation drawer component that serves a
similar purpose, although it is not visible by default—users need to
perform a swiping down gesture to show the bar. In our dataset, in
most cases a bottom navigation bar on the phone is mapped to a
navigation drawer on the watch.

A floating action button performs the primary, or most common,
action on a screen [15], such as drafting a new email in an email
app. It appears in front of all screen content, typically as a circular
shape with an icon in its center. Typically, a screen only has one
floating action button. In our dataset, a floating action button is
typically mapped to a single Interactive Card when it is on the
opening screen on the phone. This is because such primary action
is usually accessed most frequently on the watch as well. If it is
not mapped to a Card separately, it is usually mapped to an inline
action button on the top of the content view.

A top app bar [12] generally includes contents related to the
current screen. The developer typically places branding, screen
titles, navigation, and actions in the top app bar. Although a top app
bar is an important component of an app on the phone, components
in a top app bar are usually not mapped to the watch. When visual
space is at a premium many of these components can be removed,
and essential, contextual actions are instead added to the content
view.

5.10 Mapping Phone Screens Onto Watch
Screens

Because the watch has a smaller form factor than the phone, a
significant number of phone screens do not have a one-to-one
mapping to a watch screen; content may be subsetted, or one phone
screen is divided into multiple watch screens. In practice, we find
that there are three kinds of mappings between phone and watch
screens:

• One phone screen to one watch screen (103 cases, 82%). This
result matches our expectation that designers most com-
monly choose to map a single phone UI to 1 or more watch
UIs, picking a subset of UI components from the phone UI.
An important caveat is that some phone UIs are mapped
onto multiple watch screens, where multiple watch List or
Scroll screens are composed to form a single, scrollable list,
transparently to the user. As long as these are the same logi-
cal list or scroll (i.e., users can access all of these screens by
swiping up or down), we treat this as a one-to-one mapping.
This happens most commonly when adapting the first screen
of the phone app, and the first screen is mostly navigational
elements.

• One phone screen to multiple watch screens (20 cases, 16%).
In 16 of these cases, the original phone screen is a Naviga-
tional UI. On the phone, these navigation screens tend to

5.7 Static Content
The dataset includes six phone screens following the Static Content
pattern. Five of them turn into one or more Informative Cards, and
one is converted to a Scroll. The app Woman Bible uses a Scroll
pattern to show the book’s text. In other cases, a typical content
that will be mapped from a Static Content to an Informative Card is
a QR Code. In our dataset, the Business Card app actually mapped
the QR Code on the business card it displays on the phone to the
watch. Though not included in our dataset, we note this use of
QR codes in an Informative Card is common in digital payment
services, such as in the Alipay app.

5.8 Interactive Content
Our dataset contains 52 phone screens with Interactive Content.
About three-fourths are mapped to a watch screen following the
Interactive Card pattern. Five of them are a music player interface
on both the phone and watch. We notice that Google provides a
music player template in an Interactive Card for developers and
in practice, all player apps use this template in their watch apps.
Further, eight screens become an Informative Card, four are mapped
to a List, and four are mapped to a List and Cards.

Mapping Interactive Content pattern to a List usually means
that the designer creates a new navigation for the current contents.
The Runmore 5K Trainer app shows the “start activity” button, a
time indicator, and tabs containing the number of days on its phone
app, but maps only the numbers of days on its watch version and
each could start activity immediately. Sometimes new navigation
options are derived by the watch itself. In app Ride with GPS, the
“start a ride” button on the phone is mapped to a List containing
two options “Start Ride on Phone” or “Start Ride on Watch”.

There are examples where functionality is not subset, but Inter-
active Content is divided into multiple screens. For instance, the
Vivint app on the phone has an Interactive Content with both a text
message indicating the state of the home alarm and multiple sliders
to open/close doors. The watch version places the text message in
an Informative Card and the door controls in a different List.

5.9 Special Components
Most phone app UIs include special components, including a top
and bottom bar.

A bottom navigation bar typically includes icons for quick nav-
igation to major functionality in the app [13], and are present in
most apps. An app typically has only one bottom navigation bar,
which is the same across most of the screens. In Google’s Wear
OS Anatomy, there is a navigation drawer component that serves a
similar purpose, although it is not visible by default—users need to
perform a swiping down gesture to show the bar. In our dataset, in
most cases a bottom navigation bar on the phone is mapped to a
navigation drawer on the watch.

A floating action button performs the primary, or most common,
action on a screen [15], such as drafting a new email in an email
app. It appears in front of all screen content, typically as a circular
shape with an icon in its center. Typically, a screen only has one
floating action button. In our dataset, a floating action button is
typically mapped to a single Interactive Card when it is on the
opening screen on the phone. This is because such primary action
is usually accessed most frequently on the watch as well. If it is
not mapped to a Card separately, it is usually mapped to an inline
action button on the top of the content view.

A top app bar [12] generally includes contents related to the
current screen. The developer typically places branding, screen
titles, navigation, and actions in the top app bar. Although a top app
bar is an important component of an app on the phone, components
in a top app bar are usually not mapped to the watch. When visual
space is at a premium many of these components can be removed,
and essential, contextual actions are instead added to the content
view.

5.10 Mapping Phone Screens Onto Watch
Screens

Because the watch has a smaller form factor than the phone, a
significant number of phone screens do not have a one-to-one
mapping to a watch screen; content may be subsetted, or one phone
screen is divided into multiple watch screens. In practice, we find
that there are three kinds of mappings between phone and watch
screens:

• One phone screen to one watch screen (103 cases, 82%). This
result matches our expectation that designers most com-
monly choose to map a single phone UI to 1 or more watch
UIs, picking a subset of UI components from the phone UI.
An important caveat is that some phone UIs are mapped
onto multiple watch screens, where multiple watch List or
Scroll screens are composed to form a single, scrollable list,
transparently to the user. As long as these are the same logi-
cal list or scroll (i.e., users can access all of these screens by
swiping up or down), we treat this as a one-to-one mapping.
This happens most commonly when adapting the first screen
of the phone app, and the first screen is mostly navigational
elements.

• One phone screen to multiple watch screens (20 cases, 16%).
In 16 of these cases, the original phone screen is a Naviga-
tional UI. On the phone, these navigation screens tend to

A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

have the most important content, such as key navigational el-
ements, so designers place these elements on multiple watch
screens.

• Multiple phone screens to one watch screen (3 cases, 2%).
Since the watch has a smaller screen, mapping components
from multiple phone screens to one watch screen usually
requires a significant restructuring. We expect that the ad-
ditional design effort required makes this pattern rarer. For
example, in the Fishbrain app, the “Log Catches”, “Fishing
Forcast”, and “Map Navigation” appear in different naviga-
tion levels in the phone app, but they appear on a single
watch screen, probably because users use these two features
more frequently on their watches. We hypothesize that cases,
where the most important information is not on one screen
on the phone indicate a design flaw, which is exacerbated by
a more constrained form factor; in other words, the phone
UI would likely be improved by a similar restructuring.

6 UI ADAPTATION TRENDS AND DESIGN
GUIDELINES

This section discusses trends in the dataset and elaborates possi-
ble reasons behind these trends. The section then presents design
guidelines for adapting a phone UI to a watch. These trends de-
scribe basic watch patterns that are general enough for all wearable
devices with a small display: lists and cards.

6.1 Trends among patterns
Themajority of top-level navigation patterns aremapped to
Lists or multiple Cards. Such adaption is straightforward, as the
navigation options turn into list items. Users can easily understand
the new UI on the watch by recognizing the same icon or text
even if the layout is changed. This trend does not hold for the
Skeuomorphic pattern.

The decision to use Cards instead of a List appears to be
motivated by prioritizing a particular function on the open-
ing screen. This can be the “Start activity” button in a fitness app,
or “the most recent QR ticket” in a movie theatre app.

Whenmappingpatterns containing previews to thewatch,
designers need to balance between the amount of informa-
tion and the overall clarity of the UIs. Phone UI patterns like
the Dashboard or Gallery include a preview of information, whereas
the Springboard and List Menu do not. Removing part of the pre-
view information is common in adapting to the watch. Further,
legibility is important, especially for users in motion [4], and de-
signers reduce content to keep fonts and images sufficiently large.

There is a natural correspondence between Side Drawer
on the phone and anavigation drawer on thewatch; yet three
of the five applications in our data set did not map to this
pattern. As with a side drawer, a navigation drawer is hidden by
default and revealed when a user does a downward “swipe” ges-
ture [14]. Two of the five apps used cards that were placed in a
navigation drawer, whereas the other three moved content from a
secondary navigation interface to a primary navigation interface.

6.2 Design Guidelines
Based on the observations of current practice, this subsection presents
guidelines to assist developers in adapting a phone UI to a watch.

(1) Most phone UI patterns have a natural watch counter-
part, which should be used by default.As detailed above,
each pattern has a natural default counterpart on the watch.
For example, designers typically map a phone Dashboard to
a set of Cards on the watch. Although there are reasons to
deviate from the default, the majority of cases do not.

(2) Appropriately subset contents on thewatch. The watch
has a much smaller screen, and subsetting is often neces-
sary. This subsetting often requires a judgment call from the
designer; in some cases there is redundant information to
remove, such as a preview of the content, but in others, it re-
quires an understanding of the relative utility of the content.
This is probably the facet of UI adaptation least amenable to
automation.

(3) Use the navigation drawer on the watch properly. §6.1
notes that watch apps are not using the navigation drawer,
despite the fact that it is a natural counterpart to the Side
Drawer on the phone. We believe secondary navigation in-
terfaces likely have value and should likely be retained even
on a smaller screen; this is best evaluated with user studies
in future work.

(4) Use a List for the Navigation pattern and a set of Cards
for Content-based patterns. The List pattern is the most
common layout on watch apps, and users are familiar with
this. Thus, it is a reasonable default for many navigation
patterns. Similarly, for content-based patterns, the Card is
best, as it avoids placing important content off-screen at the
bottom of a long Scroll.

7 LIMITATIONS AND FUTUREWORK
We did not collect interactions related to components in our dataset.
Adding UI components composition of patterns will increase both
the complexity and the specificity of each category, leading to sev-
eral sub-categories that will be less abstract and more close to the
actual screens. We also believe the position of UI components is
significant, especially for content-based UIs. For example, screens
with buttons nearly evenly distributed (e.g., calculators) are of-
ten intended to convey a different relationship than screens with
buttons having a clear hierarchy (e.g., music players). Further, inter-
actions with components can trigger transitions between screens,
or changes in part of the screen. Adding interactions could further
help with categorizing components in context. We leave identifying
strategies for mapping components for future work. Finally, our
analysis does not factor in the semantics of an app’s tasks or con-
tents in identifying patterns; it is probable that apps with similar
contextual or situational features may follow similar adaptation
strategies. We leave the exploration of these various features for
future work.

Another limitation of this project is the focus on free applica-
tions. It is possible that paid content has a significantly different
pattern, although exploring this may be both labor-intensive and
require personal information. It is possible that one might be able
to address this in future work with a tool, such as a debugger, that

MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany Zhilan Zhou, Jian Xu, Aruna Balasubramanian, and Donald E. Porter

can manipulate control flow and data values to reach screens that
one would not be able to reach without paid content, although this
may require more manual validation than any time it is saving.

In future work, we hope to combine these observations with
watch app generation tools, such as UIWear [29], to realize fully
automatic, or an improved semi-automatic, watch app generation.
On the phone side, users could choose UI components they want on
a watch, and, based on the observations in this study, recommend
watch UI templates for the watch.

8 RELATEDWORK
This section surveys related work on GUI design patterns, with a
particular focus on extending UIs to different platforms and existing
UI datasets on these adaptation patterns.

Cross-device UI platforms:Aswearable devices are increasing in
popularity, a natural need arises to easily extend the UI of the phone
onto a wearable, or adapt the UI to run the app independently of a
phone, but on a different form factor. A number of research projects
have looked at issues relating to the engineering complexity of
building cross-device apps.

One category of this research assumes a humanwill design the in-
terface, and the research contribution is reducing the complexity of
coordinating a UI across multiple devices. For instance, UIWear [29]
observes that extending a phone app’s interface onto a wearable
involves developing an ad hoc networking protocol that relays state
between the devices. UIWear observes that most of the effort can
be automated, except for the design itself. Similarly, Conductor [16]
presents a framework for orchestrating a UI that spans a large array
of devices. PageTailor [5] and Highlight [23] simplify the process of
transferring from a PC version webpage to a smartphone version
webpage. Gjerlufsen et al. [10] present a middleware for developing
multi-screen apps, which decouples application behavior and data.
Nebeling et al. [20, 21] provide platforms to generate UIs across de-
vices semi-automatically, in which users only need to specify their
preferred UI customization across devices. GUMMY [18] generates
an initial design for a new platform from existing user interfaces
by manually specifying the layout. WinCuts [28] presents a system
that allows users to replicate arbitrary regions of existing windows
into independent windows view of a region of the source window.
WinCuts also allows users to share those windows across devices.

In the presence of heterogeneous form-factors, or devices that
come out after the app is designed, some projects have investigated
techniques to help developers place UI elements on the device(s)
best suited for that element. For instance, Panelrama [30] identifies
several key usability factors, such as device size or keyboard type,
that a programmer assigned to each UI screen (or panel in their
nomenclature). By matching these qualities to the underlying de-
vice, Panelrama distributes elements to each device automatically.
Mori et al. [19] present a tool, TERESA, which abstracts user inter-
faces based on their task models [25], and then generates concrete
user interfaces for different devices automatically.

In total, adapting an app’s user interface from one form factor
to another is very much an art. Broadly speaking, given a design,
prior research simplifies the construction of creating interfaces that
span devices, or provides some heuristics to assist the developer
in placing elements. It is an open question the degree to which

the design of UI adaptation can be automated; this paper lays a
foundation for future studies by measuring the state of practice.

Studies on UI design patterns: A number of studies define and
categorize UI design patterns, but these work does not consider
patterns for adapting UIs to new devices with different form factors.

In particular, a number of studies have considered app design
for smartphones. For instance, Neil et al. [22] introduces more than
90 mobile app design patterns crossing 11 categories, based on
functionality, which is one of our inspirations when categorizing
mobile and wearable UIs. Calvary et al. [6] introduces a framework
for classifying UIs and usage contexts. Specifically, the framework
expresses how a change of context is considered and supported
in a context-sensitive user interface. Nilsson et al. [24] introduces
a collection of UI design patterns for mobile applications. These
patterns are grouped along three main axes: utilizing screen space,
interaction mechanisms, and overall design. This study also intro-
duces a general guideline on how to use the design patterns at
suitable circumstances. Gallud et al. [9] introduces an emerging
topic of the concept of Distributed User Interfaces (DUIs) that the UI
can be split and composed, moved, copied or cloned among devices
running the same or different operating systems. SahamiShirazi
et al. [27] analyzed over 29K UI layout files so that it concluded
the most frequent interface elements and identify combinations
of interface components from 400 free Android apps. This study
identifies general patterns for the combinations of layout styles.

Building UI Datasets: This paper is inspired in part by prior
work that collected and analyzed datasets of UI design patterns.
These studies provide useful data for the community, but answer-
ing different questions. The most relevant work analyzes data sets
of smartphone app UIs and web pages. For example, Alharbi et
al. [2] collected more than 25 million UI elements by tracking 24k
smartphone apps for 18 months and analyzed how UI components
changed though the period. Kumar et al. [17] collected millions
of design elements from 100,000 Web pages to understand design
demographics, automate design curation, and support data-driven
design tools. RICO [7] builds a mobile app UI dataset that covers
over 9.7k Android apps. Similarly, ERICA [8] captures how a UI
changes in response to user interactions, automatically generating
datasets of user interaction traces.

9 CONCLUSION
This paper presents the first dataset of real-world applications with
both a phone and watch component, and analyzes the trends in
how the UI is adapted. One-to-one mappings of phone screens onto
watch screens are common, and it is likely that one can automati-
cally produce at least a first draft of a watch UI from a phone UI
for the majority of cases. Apps that spread content from one phone
screen onto multiple watch screens tend to do this for important
navigation elements, where buttons and other important elements
are replicated for convenience, or promoted onto the first screen of
the app.

Subsetting watch content and functionality is common, espe-
cially for non-essential details or decorations. In general, the subset-
ting process is driven by the importance of the content more than
the amount of data on the screen. It is likely that, with additional

A Survey of Patterns for Adapting Smartphone App UIs to Smart Watches MobileHCI ’20, October 5–8, 2020, Oldenburg, Germany

profiling of how end-users typically navigate the phone app, this
step of subsetting could also be potentially automated.

In future work, these data and observations can ground future
studies on the efficacy of automated or semi-automated UI layout
strategies, as well as evaluating user satisfaction with different
common design decisions.

ACKNOWLEDGMENTS
We thank Bhushan Jain and the anonymous reviewers for their in-
sightful comments on previous drafts.We thankDaniel Koenigsperger,
Rachel Poppalardo, and Marigrace Seaton for help collecting the
data set in this paper. This work was supported in part by NSF
grants NSF CNS-1717973 and CNS-1718491.

REFERENCES
[1] AccuWeather. 2019. AccuWeather Play Store Page. https://play.google.com/

store/apps/details?id=com.accuweather.android&hl=en_US.
[2] Khalid Alharbi and Tom Yeh. 2015. Collect, Decompile, Extract, Stats, and Diff:

Mining Design Pattern Changes in Android Apps. In Proceedings of the 17th
International Conference on Human-Computer Interaction with Mobile Devices and
Services (Copenhagen, Denmark) (MobileHCI ’15). ACM, New York, NY, USA,
515–524. https://doi.org/10.1145/2785830.2785892

[3] APKMirror. 2020. APKMirror. https://www.apkmirror.com/.
[4] Apple. 2019. Apple WatchOS. http://www.apple.com/watchos/.
[5] Nilton Bila, Troy Ronda, Iqbal Mohomed, Khai N. Truong, and Eyal de Lara.

2007. PageTailor: Reusable End-user Customization for the Mobile Web. In
Proceedings of the 5th International Conference on Mobile Systems, Applications
and Services (San Juan, Puerto Rico) (MobiSys ’07). ACM, New York, NY, USA,
16–29. https://doi.org/10.1145/1247660.1247666

[6] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent
Bouillon, and Jean Vanderdonckt. 2003. A Unifying Reference Framework for
multi-target user interfaces. Interacting with Computers 15, 3 (2003), 289 – 308.
https://doi.org/10.1016/S0953-5438(03)00010-9 Computer-Aided Design of User
Interface.

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[8] Biplab Deka, ZifengHuang, and Ranjitha Kumar. 2016. ERICA: InteractionMining
Mobile Apps. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). ACM, New York, NY, USA,
767–776. https://doi.org/10.1145/2984511.2984581

[9] Jos A. Gallud, Ricardo Tesoriero, and Victor M. R. Penichet. 2011. Distributed User
Interfaces: Designing Interfaces for the Distributed Ecosystem. Springer Publishing
Company, Incorporated.

[10] Tony Gjerlufsen, Clemens Nylandsted Klokmose, James Eagan, Clément Pillias,
and Michel Beaudouin-Lafon. 2011. Shared Substance: Developing Flexible Multi-
surface Applications. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Vancouver, BC, Canada) (CHI ’11). ACM, New York, NY,
USA, 3383–3392. https://doi.org/10.1145/1978942.1979446

[11] Google. 2018. Android uiatomator API. https://developer.android.com/reference/
android/support/test/uiautomator/package-summary.

[12] Google. 2018. App bars: top. https://material.io/design/components/app-bars-
top.html.

[13] Google. 2018. Bottom navigation. https://material.io/design/components/bottom-
navigation.html.

[14] Google. 2020. Android Wear System Overview – Anatomy. https://
designguidelines.withgoogle.com/wearos/system-overview/anatomy.html.

[15] Google. 2020. Buttons: floating action button. https://material.io/components/
buttons-floating-action-button/buttons-floating-action-button.html.

[16] Peter Hamilton and Daniel J. Wigdor. 2014. Conductor: Enabling and Understand-
ing Cross-device Interaction. In Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14).
ACM, New York, NY, USA, 2773–2782. https://doi.org/10.1145/2556288.2557170

[17] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad,
Scott R. Klemmer, and Jerry O. Talton. 2013. Webzeitgeist: Design Mining the
Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI ’13). ACM, New York, NY, USA, 3083–3092. https:
//doi.org/10.1145/2470654.2466420

[18] Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin Coninx. 2008. Gummy for
Multi-platform User Interface Designs: Shape Me, Multiply Me, Fix Me, Use Me.
In Proceedings of the Working Conference on Advanced Visual Interfaces (Napoli,
Italy) (AVI ’08). ACM, New York, NY, USA, 233–240. https://doi.org/10.1145/
1385569.1385607

[19] Giulio Mori, Fabio Paternò, and Carmen Santoro. 2003. Tool Support for Design-
ing Nomadic Applications. In Proceedings of the 8th International Conference on
Intelligent User Interfaces (Miami, Florida, USA) (IUI ’03). ACM, New York, NY,
USA, 141–148. https://doi.org/10.1145/604045.604069

[20] Michael Nebeling. 2017. XDBrowser 2.0: Semi-Automatic Generation of Cross-
Device Interfaces. In Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems (Denver, Colorado, USA) (CHI ’17). ACM, New York, NY,
USA, 4574–4584. https://doi.org/10.1145/3025453.3025547

[21] Michael Nebeling and Anind K. Dey. 2016. XDBrowser: User-Defined Cross-
Device Web Page Designs. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (San Jose, California, USA) (CHI ’16). ACM, New
York, NY, USA, 5494–5505. https://doi.org/10.1145/2858036.2858048

[22] Theresa Neil. 2014. Mobile design pattern gallery: UI patterns for smartphone apps.
O’Reilly Media, Inc.

[23] Jeffrey Nichols, Zhigang Hua, and John Barton. 2008. Highlight: A System for
Creating and Deploying Mobile Web Applications. In Proceedings of the 21st
Annual ACM Symposium on User Interface Software and Technology (Monterey,
CA, USA) (UIST ’08). ACM, New York, NY, USA, 249–258. https://doi.org/10.
1145/1449715.1449757

[24] Erik G Nilsson. 2009. Design patterns for user interface for mobile applications.
Advances in engineering software 40, 12 (2009), 1318–1328.

[25] Fabio Paterno. 1999. Model-Based Design and Evaluation of Interactive Applications
(1st ed.). Springer-Verlag, Berlin, Heidelberg.

[26] Aaron Pressman. 2018. Why Smart Wearables Will Be One of the Tech Industry’s
Few Bright Spots. http://fortune.com/2018/12/17/wearables-smartwatch-apple-
fitbit-garmin/.

[27] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin
Schmidt, and Hansjörg Schmauder. 2013. Insights into Layout Patterns of Mobile
User Interfaces by an Automatic Analysis of Android Apps. In Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(London, United Kingdom) (EICS ’13). ACM, New York, NY, USA, 275–284. https:
//doi.org/10.1145/2494603.2480308

[28] Desney S. Tan, BrianMeyers, andMary Czerwinski. 2004. WinCuts: Manipulating
Arbitrary Window Regions for More Effective Use of Screen Space. In CHI ’04
Extended Abstracts on Human Factors in Computing Systems (Vienna, Austria)
(CHI EA ’04). ACM, New York, NY, USA, 1525–1528. https://doi.org/10.1145/
985921.986106

[29] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and Donald E.
Porter. 2017. UIWear: Easily Adapting User Interfaces for Wearable Devices. In
Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking (Snowbird, Utah, USA) (MobiCom ’17). ACM, New York, NY, USA,
369–382. https://doi.org/10.1145/3117811.3117819

[30] Jishuo Yang and Daniel Wigdor. 2014. Panelrama: Enabling Easy Specification of
Cross-deviceWebApplications. In Proceedings of the 32nd Annual ACMConference
on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI ’14).
ACM, New York, NY, USA, 2783–2792. https://doi.org/10.1145/2556288.2557199

https://play.google.com/store/apps/details?id=com.accuweather.android&hl=en_US
https://play.google.com/store/apps/details?id=com.accuweather.android&hl=en_US
https://doi.org/10.1145/2785830.2785892
https://www.apkmirror.com/
http://www.apple.com/watchos/
https://doi.org/10.1145/1247660.1247666
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.1145/2984511.2984581
https://doi.org/10.1145/1978942.1979446
https://developer.android.com/reference/android/support/test/uiautomator/package-summary
https://developer.android.com/reference/android/support/test/uiautomator/package-summary
https://material.io/design/components/app-bars-top.html
https://material.io/design/components/app-bars-top.html
https://material.io/design/components/bottom-navigation.html
https://material.io/design/components/bottom-navigation.html
https://designguidelines.withgoogle.com/wearos/system-overview/anatomy.html
https://designguidelines.withgoogle.com/wearos/system-overview/anatomy.html
https://material.io/components/buttons-floating-action-button/buttons-floating-action-button.html
https://material.io/components/buttons-floating-action-button/buttons-floating-action-button.html
https://doi.org/10.1145/2556288.2557170
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/1385569.1385607
https://doi.org/10.1145/1385569.1385607
https://doi.org/10.1145/604045.604069
https://doi.org/10.1145/3025453.3025547
https://doi.org/10.1145/2858036.2858048
https://doi.org/10.1145/1449715.1449757
https://doi.org/10.1145/1449715.1449757
http://fortune.com/2018/12/17/wearables-smartwatch-apple-fitbit-garmin/
http://fortune.com/2018/12/17/wearables-smartwatch-apple-fitbit-garmin/
https://doi.org/10.1145/2494603.2480308
https://doi.org/10.1145/2494603.2480308
https://doi.org/10.1145/985921.986106
https://doi.org/10.1145/985921.986106
https://doi.org/10.1145/3117811.3117819
https://doi.org/10.1145/2556288.2557199

	Abstract
	1 Introduction
	2 Phone UI Layouts
	2.1 Navigation UI Patterns
	2.2 Content-based UI Patterns

	3 Watch UI Layouts
	4 Data Collection Methodology
	5 UI Adaptation Pattern Study
	5.1 Springboard
	5.2 List Menu
	5.3 Dashboard
	5.4 Gallery
	5.5 Side Drawer
	5.6 Skeuomorphic
	5.7 Static Content
	5.8 Interactive Content
	5.9 Special Components
	5.10 Mapping Phone Screens Onto Watch Screens

	6 UI Adaptation Trends and Design Guidelines
	6.1 Trends among patterns
	6.2 Design Guidelines

	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

