
Transactional system calls on Linux

Donald E. Porter
The University of Texas at Austin
porterde@cs.utexas.edu

Emmett Witchel
The University of Texas at Austin
witchel@cs.utexas.edu

Abstract

Have you ever had to manually back out an unsuccess-
ful software install? Has a machine ever crashed on you
while adding a user, leaving the group, password and
shadow files inconsistent? Have you struggled to elim-
inated time-of-check-to-time-of-use (TOCTTOU) race
conditions from an application? All of these problems
have a single underlying cause: programmers cannot
group multiple system calls into a single, consistent op-
eration. If users (and kernel developers) had this power,
there are a variety of innovative services they could
build and problems they could eliminate. This paper de-
scribes system transactions and a variety of applications
based on system transactions. We add system calls to
begin, end, and abort a transaction. A system call that
executes within a transaction is isolated from the rest of
the system. The effects of a system transaction are un-
done if the transaction fails.

This paper describes a research project that developed
transactional semantics for 152 Linux system calls and
abstractions including signals, process creation, files,
and pipes. The paper also describes the practical chal-
lenges and trade-offs in implementing transactions in
Linux. The code changes needed to support transac-
tions are substantial, but so are the benefits. With no
modifications to dpkg itself, we were able to wrap an
installation of OpenSSH in a system transaction. The
operating system rolls back failed installations automat-
ically, preventing applications from observing inconsis-
tent files during the installation, and preserving unre-
lated, concurrent updates to the file system. Overheads
for using transactions in an application like software in-
stallation range from 10-70%.

1 Introduction

A number of programming tasks are impossible to write
robustly using the POSIX API. For example, backing

out a failed software installation or upgrade is a major
hassle for system administrators because the software
spans multiple files with tightly coupled dependences.
For instance, a new version of a binary may expect a new
configuration file format or a new binary may not link
with previous versions of the supporting libraries. If a
software installation fails or the machine crashes during
installation, these tight dependences are broken, often
rendering the software unusable. If the failed upgrade is
for a core system utility, such as the shell, the entire sys-
tem may stop working. Software installation tools, such
as yum and apt, have evolved to provide sophisticated
support for tracking package dependences and automat-
ically uninstalling libraries that are no longer needed,
but even these systems fail—truly robust failure recov-
ery remains elusive.

Even simple changes to system settings, such as adding
user accounts, are prone to subtle errors or race con-
ditions with other administrators. Local user accounts
are stored across three files that need to be mutu-
ally consistent: /etc/passwd, /etc/shadow, and
/etc/group. Utilities like vipw and useradd help
ensure that these account files are formatted correctly
and mutually consistent. These utilities create lock files
to prevent concurrent modifications, but this cannot pre-
vent a careless administrator from ignoring the lock file
and editing the password files directly. Moreover, these
utilities cannot ensure that updates to these files are mu-
tually consistent if the system crashes during an oper-
ation. For instance, suppose the system crashes after
useradd writes /etc/passwd but before it writes
/etc/shadow. After rebooting the system, the new
user will not be able to log on, yet useradd will fail
because it thinks the user already exists, leaving the sys-
tem administrator to manually repair the database files.

Race conditions for OS-managed resources, including
the file system namespace, can cause security problems
for programs that run as root. Despite their concep-
tual simplicity, time-of-check-to-time-of-use, or TOCT-

1



Victim Attacker
if(access(’foo’)){

symlink(’secret’,’foo’);
fd=open(’foo’);
write(fd,...);
...

}

Victim Attacker
symlink(’secret’,’foo’);

sys_xbegin();
if(access(’foo’)){
fd=open(’foo’);
write(fd,...);
...

}
sys_xend();

symlink(’secret’,’foo’);

Figure 1: An example of a TOCTTOU attack, followed by
an example that eliminates the race using system transac-
tions. The attacker’s symlink is serialized (ordered) either
before or after the transaction, and the attacker cannot see
partial updates from the victim’s transaction, such as changes
to atime.

TOU, races [7] have created over 600 vulnerabilities in
real, deployed applications [10]. A TOCTTOU race
most commonly occurs as depicted in Figure 1, when a
malicious program changes the file system namespace
with a symlink, just between the check (access)
and the use (open) in an application with root privi-
lege. This is a common attack vector for privilege esca-
lation, as these race conditions can trick a process with
root-privilege to overwrite a sensitive file, such as the
password database.

Each of these seemingly unrelated problems share an
underlying cause: developers cannot group multiple
system calls into a single, consistent operation. The
ideal software installer would be able to atomically re-
place multiples files on the system at once; when the in-
stallation finished, either all of the updates take effect or
they are all rolled back. Similarly, adding a user should
atomically update each relevant configuration file, and
prevent a concurrent user from interfering with the up-
dates. Finally, an application with root privileges should
be able to request that a permissions check and subse-
quent file open be executed in isolation from potentially
interfering applications.

Some of these problems, such as TOCTTOU races, are
being addressed in the kernel by adding more function-
ality to existing system calls. The open system call

has acquired a number of flags that bundle in tasks like
checking that the file doesn’t exist and conditionally
creating the file. The current open implementation is
more complex than a simple open, create, and stat
combined. Similarly, the rename system call has been
heavily used by applications, such as editors, to atomi-
cally replace a single file. The rename implementation
is so complex that Linux uses a single, file-system wide
mutex to synchronize renames in all but the simplest
cases, harming system scalability. In order to address
TOCTTOU specifically, openat and over a dozen sim-
ilar variants have been added to Linux. These calls es-
sentially allow applications to reimplement their own
private dcache, at a substantial performance and com-
plexity cost to the application [16].

As an alternative, system transactions allow developers
to compose a series of simple system calls into a more
complex operation. The kernel guarantees that a system
transaction appears to execute as one isolated, atomic
operation. System transactions eliminate the need for
complex work-arounds in applications, and even obvi-
ate the need for such semantically heavy system calls
as rename. Windows Vista and later have already
adopted a transactional file system and registry to ad-
dress problems arising from crashes during software in-
stallation [14]. Rather than having to petition kernel de-
velopers for a point solution to the next race condition
or crash-consistency issue, system transactions give de-
velopers the tools to solve their own problems.

This paper describes ongoing research at the University
of Texas at Austin to develop transactional system calls
on a variant of Linux, called TxOS. The work has ap-
peared in previous research venues [11, 12]; this paper
reviews the design of the system with a focus on the
needed changes to the Linux source code and the ra-
tionale for the design decisions. Section 2 provides an
overview of the TxOS design and Section 3 describes
the implementation in more detail. Sections 4 and 5
measure the performance of system transactions. Sec-
tion 6 describes why system transactions are a better
solution than file locking or a transactional file system,
Section 7 describes ongoing and future directions for the
project, and Section 8 concludes.

2 TxOS Overview

System transactions provide ACID semantics for up-
dates to OS resources, such as files, pipes, and signals.

2



Subsystem Tot. Part. Examples
Credentials 34 1 getuid, getcpu, setr-

limit (partial)
Processes 13 3 fork, vfork, clone,

exit, exec (partial)
Communication 15 0 rt_sigaction,

rt_sigprocmask,
pipe

Filesystem 63 4 link, access, stat,
chroot, dup, open,
close, write, lseek

Other 13 6 time, nanosleep, ioctl
(partial), mmap2
(partial)

Totals 138 14 Grand total: 152

Unsupported
Processes 33 nice, uselib, iopl, sched_yield,

capget
Memory 15 brk, mprotect, mremap, mad-

vise
Filesystem 29 mount, sync, flock, setxattr,

io_setup, inotify
File Descriptors 14 splice, tee, sendfile, select, poll
Communication 8 socket, ipc, mq_open,

mq_unlink
Timers/Signals 12 alarm, sigaltstack,

timer_create
Administration 22 swapon, reboot, init_module,

settimeofday
Misc 18 ptrace, futex, times, vm86,

newuname
Total 151

Table 1: Summary of system calls that TxOS completely
supports (Tot.) and partially supports (Part.) in transactions,
followed by system calls with no transaction support. Par-
tial support indicates that some (but not all) execution paths
for the system call have full transactional semantics. Linux
2.6.22.6 on the i386 architecture has 303 total system calls.

In this programming model, both transactional and non-
transactional system calls may access the same system
state; the OS imposes a global order for all accesses
and arbitrates contention fairly. The interface for system
transactions is intuitive and simple, allowing a program-
mer to wrap a block of unmodified code in a transaction
simply by adding sys_xbegin()and sys_xend().

TxOS implements system transactions by isolating data
read and written in a transaction (making it invisible
to unrelated kernel threads) using existing kernel mem-
ory buffers and data structures. When an application

writes data to a file system or device, the updates gener-
ally go into an OS memory buffer first, allowing the OS
to batch updates to the underlying device. By making
these buffers copy-on-write for transactions, TxOS iso-
lates transactional data accesses until commit. In TxOS,
transactions must fit into main memory, although this
limit could be raised in future work by swapping un-
committed transaction state to disk.

TxOS isolates updates to kernel data structures using re-
cent implementation techniques from object-based soft-
ware transactional memory systems. These techniques
are a departure from the logging and two-phase locking
approaches of databases and historic transactional oper-
ating systems, such as QuickSilver [15] and Locus [17]
(Section 2.3). TxOS’s isolation mechanisms are opti-
mistic, allowing concurrent transactions on the assump-
tion that conflicts are rare.

Table 1 summarizes the system calls and resources for
which TxOS supports transactional semantics, including
the file system, process and credential management, sig-
nals, and pipes. A partially supported system call means
that some processing paths are fully transactional, and
some are not. For example, ioctl is essentially a large
switch statement, and TxOS does not support transac-
tional semantics for every case. When the user makes
an unsupported system call or a partially supported call
cannot support transactional semantics, the system logs
a warning or aborts the transaction, depending on the
flags passed to sys_xbegin().

Ideal support for system transactions would include ev-
ery reasonable system call. TxOS supports a subset of
Linux system calls as shown in Table 1. The count of
152 supported system calls shows the relative maturity
of the prototype, but also indicates that it is incomplete.
The count of unsupported system calls does not propor-
tionately represent the importance or challenge of the re-
maining work because many resources, such as network
sockets, IPC, etc., primarily use the common file system
interfaces. For instance, extending transactions to in-
clude networking (a real challenge) would increase the
count of supported calls by 5, whereas transaction sup-
port for extended file attributes (a fairly straightforward
extension) would add 12 system calls. The remaining
count of system calls falls into three categories: sub-
stantial extensions (memory management, communica-
tion), straightforward, but perhaps less common or im-
portant (process management, timers, most remaining
file interfaces), and operations that are highly unlikely

3



Function Name Description
int sys_xbegin
(int flags)

Begin a transaction. The flags specify
transactional behavior, including auto-
matically restarting the transaction af-
ter an abort, ensuring that committed
results are on stable storage (durable),
and aborting if an unsupported system
call is issued. Returns status code.

int sys_xend() End of transaction. Returns whether
commit succeeded.

void sys_xabort
(int no_restart)

Aborts a transaction. If the transac-
tion was started with restart, setting
no_restart overrides that flag and does
not restart the transaction.

Table 2: TxOS API

to be useful inside a transaction (e.g., reboot, mount,
init_module, etc.). TxOS supports transactional se-
mantics for enough kernel subsystems to demonstrate
the power and utility of system transactions.

2.1 System transactions for system state

Although system transactions provide ACID semantics
for system state, they do not provide these semantics for
application state. System state includes OS data struc-
tures and device state stored in the operating system’s
address space, whereas application state includes only
the data structures stored in the application’s address
space. When a system transaction aborts, the OS re-
stores the kernel state to its pre-transaction state, but it
does not revert application state.

For most applications, we expect programmers will use
a library or runtime system that transparently manages
application state as well as system transactions. In
simple cases, such as the TOCTTOU example, the de-
veloper could manage application state herself. TxOS
provides single-threaded applications with an automatic
checkpoint and restore mechanism for the application’s
address space that marks the pages copy-on-write (sim-
ilar to Speculator [9]), which can be enabled with a
flag to sys_xbegin() (Table 2). In a recent pa-
per [11], we describe how system transactions integrate
with hardware and software transactional memory, pro-
viding a complete transactional programming model for
multi-threaded applications.

2.2 Communication model

Code that communicates outside of a transaction and re-
quires a response cannot be encapsulated into a single
transaction. Communication outside of a transaction vi-
olates isolation. For example, a transaction may send a
message to a non-transactional thread over an IPC chan-
nel, which the system will buffer until commit. If the
code waits for a reply to the buffered message, the ap-
plication will deadlock. The programmer is responsible
for avoiding this send/reply idiom within a transaction.

Communication among threads within the same trans-
action is unrestricted. This paper only considers system
transactions on a single machine, but future work could
allow system transactions to span multiple machines.

2.3 Managing transactional state

Databases and historical transactional operating systems
typically update data in place and maintain an undo log.
This approach is called eager version management [5].
These systems isolate transactions by locking data when
it is accessed and holding the lock until commit. This
technique is called two-phase locking, and it usually
employs locks that distinguish read and write accesses.
Because applications generally do not follow a globally
consistent order for data accesses, these systems can
deadlock. For example, one thread might read file A
then write file B, while a different thread might read file
B, then write file A.

The possibility of deadlock complicates the program-
ming model of eager versioning transactional systems.
Deadlock is commonly addressed by exposing a time-
out parameter to users. Setting the timeout properly is
a challenge. If it is too short, it can starve long-running
transactions. If it is too long, it can destroy the perfor-
mance of the system.

Eager version management degrades responsiveness in
ways that are not acceptable for an OS kernel. If an in-
terrupt handler, high priority thread, or real-time thread
aborts a transaction, it must wait for the transaction to
process its undo log (to restore the pre-transaction state)
before it can safely proceed. This wait jeopardizes the
system’s ability to meet its timing requirements.

In contrast, transactions in TxOS operate on private
copies of data structures, known as lazy version man-
agement. Transactions never hold kernel locks across

4



system calls. Lazy versioning requires TxOS to hold
locks only long enough to make a private copy of the rel-
evant data structure. By enforcing a global ordering for
kernel locks, TxOS avoids deadlock. TxOS can abort
transactions instantly—the winner of a conflict does not
wait for the aborted transaction to process its undo log.

The primary disadvantage of lazy versioning is the com-
mit latency due to copying transactional updates from
the speculative version to the stable version of the data
structures. As we discuss in Section 3, TxOS minimizes
this overhead by splitting objects, turning a memcpy of
the entire object into a pointer copy.

2.4 Interoperability and fairness

TxOS allows flexible interaction between transactional
and non-transaction kernel threads. TxOS efficiently or-
ders transactions with non-transactional accesses inside
the kernel by requiring all system calls follow the same
locking discipline, and by requiring that transactions an-
notate accessed kernel objects. When a thread, trans-
actional or non-transactional, accesses a kernel object
for the first time, it must check for a conflicting anno-
tation. The scheduler arbitrates conflicts when they are
detected. In many cases, this check is performed at the
same time as a thread acquires a lock for the object.

Interoperability is a weak spot for previous transac-
tional systems. In most transactional systems, a conflict
between a transaction and a non-transactional thread
(called an asymmetric conflict [13]) must be resolved
by aborting the transaction. This approach undermines
fairness. In TxOS, because asymmetric conflicts are of-
ten detected before a non-transactional thread enters a
critical region, the scheduler has the option of suspend-
ing the non-transactional thread, allowing for fairness
between transactions and non-transactional threads.

3 Implementation

This section describes how system transactions are im-
plemented in the TxOS kernel and the reasons why the
TxOS implementation deviates from the Linux kernel.
TxOS provides transactional semantics for 152 of 303
system calls in Linux, presented in Table 1. The sup-
ported system calls include process creation and termi-
nation, credential management operations, sending and
receiving signals, and file system operations.

System transactions in TxOS add roughly 3,300 lines
of code for transaction management, and 5,300 lines for
object management. TxOS also requires about 14,000
lines of minor changes to convert kernel code to use the
new object type system and to insert checks for asym-
metric conflicts when executing non-transactionally.
Compared to the overall size of the kernel, these changes
are small; however, some changes are invasive at points
and this section explains why the changes were neces-
sary and potential alternatives.

3.1 Object versioning

TxOS maintains multiple versions of kernel data struc-
tures so that system transactions can isolate the effects
of system calls until transactions commit (i.e., hide the
effects from other kernel threads), and in order to undo
the effects of transactions if they cannot complete. Data
structures private to a process, such as the current user
id or the file descriptor table, are versioned with a sim-
ple checkpoint and restore scheme. For shared kernel
data structures, however, TxOS implements a versioning
system that borrows techniques from software transac-
tional memory systems [3] and recent concurrent pro-
gramming systems [4].

When a transaction accesses a shared kernel object, such
as an inode, it acquires a private copy of the object,
called a shadow object. All system calls within the
transaction use this shadow object in place of the stable
object until the transaction commits or aborts. The use
of shadow objects ensures that transactions always have
a consistent view of the system state. When the trans-
action commits, the shadow objects replace their stable
counterparts. If a transaction cannot complete, it simply
discards its shadow objects.

Any given kernel object may be the target of pointers
from several other objects, presenting a challenge to re-
placing a stable object with a newly-committed shadow
object. A naïve approach might update the pointers to
an object when that object is committed. This naïve ap-
proach is impractical, as some objects (e.g., inodes) are
pointed to by a substantial number of other data struc-
tures which the object itself doesn’t reference.

Splitting objects into header and data In order to
allow efficient commit of lazy versioned data, TxOS de-
composes objects into a stable header component and

5



struct inode_header {
atomic_t i_count; // Reference count
spinlock_t i_lock;
inode_data *data; // Data object
// Other objects
address_space i_data; // Cached pages
tx_data xobj; // for conflict detection
list i_sb_list; // kernel bookkeeping

};

struct inode_data {
inode_header *header;
// Common inode data fields
unsigned long i_ino;
loff_t i_size; // etc.

};

Figure 2: A simplified inode structure, decomposed into
header and data objects in TxOS. The header contains the ref-
erence count, locks, kernel bookkeeping data, and the objects
that are managed transactionally. The inode_data object
contains the fields commonly accessed by system calls, such
as stat, and can be updated by a transaction by replacing
the pointer in the header.

a volatile, transactional data component. Figure 2 pro-
vides an example of this decomposition for an inode.
The object header contains a pointer to the object’s data;
transactions commit changes to an object by replacing
this pointer in the header to a modified copy of the data
object. The header itself is never replaced by a trans-
action, which eliminates the need to update pointers in
other objects; pointers point to headers. The header
can also contain data that is not accessed by transac-
tions. For instance, the kernel garbage collection thread
(kswapd) periodically scans the inode and dentry
(directory entry) caches looking for cached file system
data to reuse. By keeping the data for kernel bookkeep-
ing, such as the reference count and the superblock list
(i_sb_list in Figure 2), in the header, these scans
never access the associated inode_data objects and
avoid restarting active transactions.

Decomposing objects into headers and data also pro-
vides the advantage of the type system ensuring that
transactional code always has a speculative object. For
instance, in Linux, the virtual file system function
vfs_link takes pointers to inodes and dentries,
but in TxOS these pointers are converted to the shadow
types inode_data and dentry_data. When mod-
ifying Linux, using the type system allows the compiler
to find all of the code that needs to acquire a specu-
lative object, ensuring completeness. The type system

also allows the use of interfaces that minimize the time
spent looking up shadow objects. For example, when
the path name resolution code initially acquires shadow
data objects, it then passes these shadow objects directly
to helper functions such as vfs_link and vfs_-
unlink. The virtual file system code acquires shadow
objects once on entry and passes them to lower lay-
ers, minimizing the need for filesystem-specific code to
reacquire the shadow objects.

Multiple data objects TxOS decomposes an object
into multiple data payloads when it houses data that
can be accessed disjointly. For instance, the inode_-
header contains both file metadata (owner, permis-
sions, etc.) and the mapping of file blocks to cached
pages in memory (i_data). A process may often read
or write a file without updating the metadata. TxOS ver-
sions these objects separately, allowing metadata oper-
ations and data operations on the same file to execute
concurrently when it is safe.

Read-only objects Many kernel objects are only read
in a transaction, such as the parent directories in a path
lookup. To avoid the cost of making shadow copies,
kernel code can specify read-only access to an object,
which marks the object data as read-only for the length
of the transaction. Each data object has a transactional
reader reference count. If a writer wins a conflict for
an object with a non-zero reader count, it must create a
new copy of the object and install it as the new stable
version. The OS garbage collects the old copy via read-
copy update (RCU) [6] when all transactional readers
release it and after all non-transactional tasks have been
descheduled. This constraint ensures that all active ref-
erences to the old, read-only version have been released
before it is freed and all tasks see a consistent view of
kernel data. The only caveat is that a non-transactional
task that blocks must re-acquire any data objects it was
using after waking, as they may have been replaced and
freed by a transaction commit. Although it complicates
the kernel programming model slightly, marking data
objects as read-only in a transaction is a structured way
to eliminate substantial overhead for memory allocation
and copying. Special support for read-mostly transac-
tions is a common optimization in transactional systems,
and RCU is a technique to support efficient, concurrent
access to read-mostly data.

6



static inline struct inode_data *
tx_get_inode(struct inode *inode,

enum access_mode mode){
if(!aborted_tx())

return error;
else if(!live_transaction()){

return inode->inode_data;
else {

contend_for_object(inode, mode);
return get_private_copy(inode);

}
}

struct inode *inode;
// Replace idata = inode->inode_data with
inode_data *idata = tx_get_inode(inode, RW);

Figure 3: Pseudo-code for the hook used to acquire an in-
ode’s data object, and an example of its use in code.

3.2 Impact of data structure changes

The largest source of lines changed in TxOS comes from
splitting objects such as inodes into multiple data struc-
tures. After a small amount of careful design work in
the headers, most of the code changes needed to split
objects was rather mechanical.

A good deal of design effort went into assessing which
fields might be modified transactionally and must be
placed in the data object, and which can remain in the
header, including read-only data, kernel-private book-
keeping, or pointers to other data structures that are in-
dependently versioned. A second design challenge was
assessing when a function should accept a header object
as an argument and when it should accept a data object.
The checks to acquire a data object are relatively expen-
sive and would ideally occur only once per object per
system call. Thus, once a system call path has acquired
a data object, it would be best to pass the data object
directly to all internal functions rather than reacquire it.
This has to be balanced against forcing needless object
acquisition in order to call a shared function that only
uses the data object in the uncommon case.

Once the function signatures and data structure defini-
tions are in place, the remaining work is largely me-
chanical. The primary change that must be propagated
through the code is replacing certain pointer derefer-
ences with hooks (Figure 3), so that TxOS can redi-
rect requests for a data object to the transaction’s private

State Description
exclusive Any attempt to access the list is a conflict

with the current owner
write Any number of insertions and deletions are

allowed, provided they do not access the
same entries. Reads (iterations) are not al-
lowed. Writers may be transactions or non-
transactional tasks.

read Any number of readers, transactional or
non-transactional, are allowed, but inser-
tions and deletions are conflicts.

notx There are no active transactions, and a non-
transactional thread may perform any oper-
ation. A transaction must first upgrade to
read or write mode.

Table 3: The states for a transactional list in TxOS. Having
multiple states allows TxOS lists to tolerate access patterns
that would be conflicts in previous transactional systems.

copy where appropriate. It is in this hook code where
TxOS checks for conflicts between transactions. By en-
capsulating this work in a macro, we hide much of the
complexity of managing private copies from the rest of
the kernel code, reducing the chances for error.

A benefit of changing the object definitions is that it
gives us confidence in the completeness of our hook
placement. In order to dereference a field that can be
modified in a transaction, the code must acquire a ref-
erence to a data object through the hook function. If
the hook is not placed properly, the code will not com-
pile. A question for future work is assessing to what
degree these changes can be automatically applied dur-
ing compilation using a tool like CIL [8]. This “header
crawl” technique leads to more lines of code changed,
but increases our confidence that the changes were made
throughout the large codebase that is the Linux kernel.

3.3 Lists

Linked lists are a key data structure in the Linux kernel,
and they present key implementation challenges. Sim-
ple read/write conflict semantics for lists throttle con-
current performance, especially when the lists contain
directory entries. For instance, two transactions should
both be allowed to add distinct directory entries to a sin-
gle list, even though each addition is a list write. TxOS
adopts techniques from previous transactional memory

7



systems to avoid conflicts on list updates that do not se-
mantically conflict [3]. TxOS isolates list updates with
a lock and defines conflicts according to the states de-
scribed in Table 3. For instance, a list in the write state
allows concurrent transactional and non-transactional
writers, so long as they do not access the same entry.
Individual entries that are transactionally added or re-
moved are annotated with a transaction pointer that is
used to detect conflicts. If a writing transaction also at-
tempts to read the list contents, it must upgrade the list
to exclusive mode by aborting all other writers. The
read state behaves similarly. This design allows maxi-
mal list concurrency while preserving correctness.

A second implementation challenge for linked lists is
that an object may be speculatively moved from one list
to another. This requires a record of membership in
both the original list (marked as speculatively deleted)
and the new list (marked as speculatively added). Ide-
ally, one would simply embed a second list_head
in each object for speculatively adding an entry to a
new list; however, if multiple transactions are contend-
ing for a list entry, it is difficult to coordinate reclaiming
the second embedded entry from an aborted transaction.
For this reason, if a transaction needs to speculatively
add an object to a list, it dynamically allocates a second
list_head, along with some additional bookkeeping.
Dynamic allocation of speculative list entries allows a
transaction to defer clean-up of speculatively added en-
tries from an aborted transaction until a more convenient
time (i.e., one that does not further complicate the lock-
ing discipline for lists).

Although TxOS dynamically allocates list_head
structures for transactions, the primary list_head for
an object is still embedded in the object. During com-
mit, a transaction replaces any dynamically allocated,
speculative entries with the embedded list head. Thus,
non-transactional code never allocates or frees memory
for list traversal or manipulation.

A final issue with lists and transactional scalability is
that most lists in the Linux kernel are protected by
coarse locks, such as the dcache_lock. Ideally, two
transactions that touch disjoint data should be able to
commit concurrently, yet acquiring a coarse lock will
cause needless performance loss. Thus, we imple-
mented fine-grained locking on lists, at the granularity
of a list. This improves scalability (§ 5), but complicates
the locking discipline. Locks in TxOS are ordered by
kernel virtual address, except that list locks must be ac-

quired after other object locks. This discipline roughly
matches the paradigm in the directory traversal code.

4 Evaluation

This section evaluates the overhead of system transac-
tions in TxOS, as well as its behavior for several case
studies, including a transactional software installation
and a transactional LDAP server. We perform all of
our experiments on a server with 1 or 2 quad-core Intel
X5355 processors (for a total of 4 or 8 cores) running at
2.66 GHz with 4 GB of memory. All single-threaded ex-
periments use the 4-core machine, and scalability mea-
surements were taken using the 8 core machine. We
compare TxOS to an unmodified Linux kernel, version
2.6.22.6—the same version extended to create TxOS.

4.1 Single-thread system call overheads

A key goal of TxOS is to make transaction support ef-
ficient, taking special care to minimize the overhead
non-transactional applications incur. To evaluate per-
formance overheads for substantial applications, we
measured the average compilation time across three
non-transactional builds of the Linux 2.6.22 kernel on
unmodified Linux (3 minutes, 24 seconds), and on
TxOS (3 minutes, 28 seconds). This slowdown of less
than 2% indicates that for most applications, the non-
transactional overheads will be negligible. At the scale
of a single system call, however, the average overhead is
currently 29%, and could be cut to 14% with improved
compiler support.

Table 4 shows the performance of common file sys-
tem system calls on TxOS. We ran each system call
1 million times, discarding the first and last 100,000
measurements and averaging the remaining times. The
elapsed cycles were measured using the rdtsc instruc-
tion. The purpose of the table is to analyze transaction
overheads in TxOS, but it does not reflect how a pro-
grammer would use system transactions because most
system calls are already atomic and isolated. Wrapping
a single system call in a transaction is the worst case
for TxOS performance because there is very little work
across which to amortize the cost of creating shadow
objects and commit.

The Base column shows the base overhead from adding
transactions to Linux. These overheads have a geomet-
ric mean of ∼3%, and are all below 20%, including a

8



Call Linux Base Static NoTx Bgnd Tx In Tx Tx
access 2.4 2.4 1.0× 2.6 1.1× 3.2 1.4× 3.2 1.4× 11.3 4.7× 18.6 7.8×
stat 2.6 2.6 1.0× 2.8 1.1× 3.4 1.3× 3.4 1.3× 11.5 4.1× 20.3 7.3×
open 2.9 3.1 1.1× 3.2 1.2× 3.9 1.4× 3.7 1.3× 16.5 5.2× 25.7 8.0×
unlink 6.1 7.2 1.2× 8.1 1.3× 9.4 1.5× 10.8 1.7× 18.1 3.0× 31.9 7.3×
link 7.7 9.1 1.2× 12.3 1.6× 11.0 1.4× 17.0 2.2× 57.1 7.4× 82.6 10.7×
mkdir 64.7 71.4 1.1× 73.6 1.1× 79.7 1.2× 84.1 1.3× 297.1 4.6× 315.3 4.9×
read 2.6 2.8 1.1× 2.8 1.1× 3.6 1.3× 3.6 1.3× 11.4 4.3× 18.3 7.0×
write 12.8 9.9 0.7× 10.0 0.8× 11.7 0.9× 13.8 1.1× 16.4 1.3× 39.0 3.0×
geomean 1.03× 1.14× 1.29× 1.42× 3.93× 6.61×

Table 4: Execution time in thousands of processor cycles of common system calls on TxOS and performance relative to
Linux. Base is the basic overhead introduced by data structure and code modifications moving from Linux to TxOS, without
the overhead of transactional lists. Static emulates compiling two versions of kernel functions, one for transactional code and
one for non-transactional code, and includes transactional list overheads. These overheads are possible with compiler support.
NoTX indicates the current speed of non-transactional system calls on TxOS. Bgnd Tx indicates the speed of non-transactional
system calls when another process is running a transaction in the background. In Tx is the cost of a system call inside a
transaction, excluding sys_xbegin()and sys_xend(), and Tx includes these system calls.

performance improvement for write. Overheads are
incurred mostly by increased locking in TxOS and the
extra indirection necessitated by data structure reorga-
nization (e.g., separation of header and data objects).
Transaction support in the kernel does not significantly
slow down non-transactional activity.

TxOS replaces simple linked lists with a more com-
plex transactional list (§3.3). The transactional list al-
lows more concurrency, both by eliminating transac-
tional conflicts and by introducing fine-grained locking
on lists, at the expense of higher single-thread latency.
The Static column adds the latencies due to transac-
tional lists to the base overheads (roughly 10%, though
more for link).

A key overhead in the TxOS prototype is dynamic
checks whether a system call is executing inside a trans-
action or not. An alternative implementation might
provide two versions of each function, one transac-
tional and one non-transactional, and convert the dy-
namic checks into compile-time checks. This optimiza-
tion would require installing a second system call ta-
ble for transactions and more sophisticated compilation
support. We capture the benefits in the Static column,
which reduces the average non-transactional system call
overhead to 14% over Linux.

The NoTx column presents measurements of the cur-
rent TxOS prototype, with dynamic checks to determine
if a thread is executing a transaction. The Bgnd Tx
column are non-transactional system call overheads for
TxOS while there is an active system transaction in a

different thread. Non-transactional system calls need to
perform extra work to detect conflicts with background
transactions. The In Tx column shows the overhead
of the system call in a system transaction. This over-
head is high, but represents a rare use case. The Tx
column includes the overheads of the sys_xbegin()
and sys_xend()system calls.

4.2 Applications and micro-benchmarks

Table 5 shows the performance of TxOS on a range
of applications and micro-benchmarks. Each measure-
ment is the average of three runs. The slowdown rel-
ative to Linux is also listed. Postmark is a file system
benchmark that simulates the behavior of an email, net-
work news, and e-commerce client. We use version 1.51
with the same transaction boundaries as Amino [18].
The LFS small file benchmark operates on 10,000 1024
bytes files, and the large file benchmark reads and writes
a 100MB file. The Reimplemented Andrew Bench-
mark (RAB) is a reimplementation of the Modified An-
drew Benchmark, scaled for modern computers. Ini-
tially, RAB creates 500 files, each containing 1000 bytes
of pseudo-random printable-ASCII content. Next, the
benchmark measures execution time of four distinct
phases: the mkdir phase creates 20,000 directories;
the cp phase copies the 500 generated files into 500 of
these directories, resulting in 250,000 copied files; the
du phase calculates the disk usage of the files and direc-
tories with the du command; and the grep/sum phase
searches the files for a short string that is not found and

9



Bench Linux TxOS Linux TxOS
ext2 ACI ext3 ACID

postmark 38.0 7.6 0.2× 180.9 154.6 0.9×
lfs small
create 4.6 0.6 0.1× 10.1 1.4 0.1×
read 1.7 2.2 1.2× 1.7 2.1 1.3×
delete 0.2 0.4 2.0× 0.2 0.5 2.4×
lfs large
write seq 1.4 0.3 0.2× 3.4 2.0 0.6×
read seq 1.3 1.4 1.1× 1.5 1.6 1.1×
write rnd 77.3 2.6 0.03× 84.3 4.2 0.05×
read rnd 75.8 71.8 0.9× 70.1 70.2 1.0×
RAB
mkdir 8.7 2.3 0.3× 9.4 2.2 0.2×
cp 14.2 2.5 0.2× 13.8 2.6 0.2×
du 0.3 0.3 1.0× 0.4 0.3 0.8×
grep/sum 2.7 3.9 1.4× 4.2 3.8 0.9×
dpkg .8 .9 1.1× .8 .9 1.1×
make 3.2 3.3 1.0× 3.1 3.3 1.1×
install 1.9 2.7 1.4× 1.7 2.9 1.7×

Table 5: Execution time in seconds for several transactional
benchmarks on TxOS and slowdown relative to Linux. ACI
represents non-durable transactions, with a baseline of ext2,
and ACID represents durable transactions with a baseline of
ext3 with full data journaling.

checksums their contents. The sizes of the mkdir and
cp phases are chosen to take roughly similar amounts of
time on our test machines. In the transactional version,
each phase is wrapped in a transaction. Make wraps a
software compilation in a transaction. Dpkg and Install
are software installation benchmarks that wrap the entire
installation in a transaction, as discussed below (§ 4.3).

The overhead of system transactions for most workloads
is quite reasonable (1–2×), and often system transac-
tions speed up the workload (e.g., postmark, LFS small
file create, RAB mkdir and cp phases). Benchmarks
that repeatedly write files in a transaction, such as the
LFS large file sequential write phase or the LFS small
file create phase, are more efficient than Linux. Transac-
tion commit groups the writes and presents them to the
I/O scheduler all at once, improving disk arm scheduling
and, on ext2 and ext3, increasing locality in the block
allocations. Write-intensive workloads outperform non-
transactional writers by as much as 29.7×.

TxOS requires extra memory to buffer updates. We
surveyed several applications’ memory overheads, and
focus here on the LFS small and large benchmarks as
two representative samples. Because the utilization pat-
terns vary across different portions of physical memory,

we consider low memory, which is used for kernel data
structures, separately from high memory, which can be
allocated to applications or to the page cache (which
buffers file contents in memory). High memory over-
heads are proportional to the amount data written. For
LFS large, which writes a large stream of data, TxOS
uses 13% more high memory than Linux, whereas LFS
small, which writes many small files, introduced less
than 1% space consumption overhead. Looking at the
page cache in isolation, TxOS allocates 1.2–1.9× as
many pages as unmodified Linux. The pressure on the
kernel’s reserved portion of physical memory, or low
memory, is 5% higher for transactions across all bench-
marks. This overhead comes primarily from the ker-
nel slab allocator, which allocates 2.4× as much mem-
ory. The slab allocator is used for general allocation (via
kmalloc) and for common kernel objects, like inodes.
TxOS’s memory use indicates that buffering transac-
tional updates in memory is practical, especially consid-
ering the trend in newer systems toward larger DRAM
and 64-bit addresses.

4.3 Software installation

By wrapping system commands in a transaction, we ex-
tend make, make install, and dpkg, the Debian
package manager, to provide ACID properties to soft-
ware installation. We test make with a build of the text
editor nano, version 2.0.6. Nano consists of 82 source
files totaling over 25,000 lines of code. Next, we test
make install with an installation of the Subversion
revision control system, version 1.4.4. Finally, we test
dpkg by installing the package for OpenSSH version
4.6. The OpenSSH package was modified not to restart
the daemon, as the script responsible sends a signal and
waits for the running daemon to exit, but TxOS defers
the signal until commit. A production system could
rewrite the script to match the TxOS signal API.

As Table 5 shows, the overhead for adding transactions
is quite reasonable (1.1–1.7×), especially considering
the qualitative benefits. For instance, by checking the
return code of dpkg, our transactional wrapper automat-
ically rolled back a broken Ubuntu build of OpenSSH
(4.6p1-5ubuntu0.3), and no concurrent tasks were able
to access the invalid package files during the installation.

10



4.4 Transactional LDAP server

Many applications have fairly modest concurrency con-
trol requirements for their stable data storage, yet
use heavyweight solutions, such as a database server.
An example is Lightweight Directory Access Protocol
(LDAP) servers, which are commonly used to authen-
ticate users and maintain contact information for large
organizations. System transactions provide a simple,
lightweight storage solution for such applications.

To demonstrate that system transactions can provide
lightweight concurrency control for server applications,
we modified the slapd server in OpenLDAP 2.3.35’s
flat file storage module (called LDIF) to use system
transactions. The OpenLDAP server supports a number
of storage modules; the default is Berkeley DB (BDB).
We used the SLAMD distributed load generation engine1

to exercise the server, running in single-thread mode.
Table 6 shows throughput for the unmodified Berke-
ley DB storage module, the LDIF storage module aug-
mented with a simple cache, and LDIF using system
transactions. The “Search Single” experiment exercises
the server with single item read requests, whereas the
“Search Subtree” column submits requests for all en-
tries in a given directory subtree. The “Add” test mea-
sures throughput of adding entries, and “Del” measures
the throughput of deletions.

The read performance (search single and search subtree)
of each storage module is within 3%, as most reads are
served from an in-memory cache. LDIF has 5–14× the
throughput of BDB for requests that modify the LDAP
database (add and delete). However, the LDIF mod-
ule does not use file locking, synchronous writes or any
other mechanism to ensure consistency. LDIF-TxOS
provides ACID guarantees for updates. Compared to
BDB, the read performance is similar, but workloads
that update LDAP records using system transactions
outperform BDB by 2–4×. LDIF-TxOS provides the
same guarantees as the BDB storage module with re-
spect to concurrency and recoverability after a crash.

4.5 Transactional ext3

In addition to measuring the overheads of durable trans-
actions, we validate the correctness of our transactional

1http://www.slamd.com/

Back end Search Search Add Del
Single Subtree

BDB 3229 2076 203 172
LDIF 3171 2107 1032 (5.1×) 2458 (14.3×)
LDIF-TxOS 3124 2042 413 (2.0×) 714 (4.2×)

Table 6: Throughput in queries per second of OpenLDAP’s
slapd server (higher is better) for a read-only and write-
mostly workload. For the Add and Del workloads, the in-
crease in throughput over BDB is listed in parentheses. The
BDB storage module uses Berkeley DB, LDIF uses a flat file
with no consistency for updates, and LDIF-TxOS augments
the LDIF storage module use system transactions on a flat file.
LDIF-TxOS provides the same crash consistency guarantees
as BDB with more than double the write throughput.

ext3 implementation by powering off the machine dur-
ing a series of transactions. After the machine is pow-
ered back on, we mount the disk to replay any opera-
tions in the ext3 journal and run fsck on the disk to
validate that it is in a consistent state. We then verify
that all results from committed transactions are present
on the disk, and that no partial results from uncommitted
transactions are visible. To facilitate scripting, we per-
form these checks using Simics. Our system success-
fully passes over 1,000 trials, giving us a high degree
of confidence that TxOS transactions correctly provide
atomic, durable updates to stable storage.

4.6 Eliminating race attacks

System transactions provide a simple, deterministic
method for eliminating races on system resources. To
qualitatively validate this claim, we reproduce several
race attacks from recent literature on Linux and validate
that TxOS prevents the exploit.

We downloaded the symlink TOCTTOU attacker code
used by Borisov et al. [1] to defeat Dean and Hu’s prob-
abilistic countermeasure [2]. This attack code creates
memory pressure on the file system cache to force the
victim to deschedule for disk I/O, thereby lengthening
the amount of time spent between checking the path
name and using it. This additional time allows the at-
tacker to win nearly every time on Linux.

On TxOS, the victim successfully resists the attacker by
reading a consistent view of the directory structure and
opening the correct file. The attacker’s attempt to inter-
pose a symbolic link creates a conflict with the transac-
tional access check, which TxOS resolves by putting

11



Figure 4: Time to perform 500,000 renames divided across
a number of threads (lower is better). TxOS implements
its renames as calls to sys_xbegin(), link, unlink,
and sys_xend(), using 4 system calls for every Linux
rename call. Despite higher single-threaded overhead,
TxOS provides better scalability, outperforming Linux by
3.9× at 8 CPUs. At 8 CPUs, TxOS also outperforms a simple,
non-atomic link/unlink combination on Linux by 1.9×.

the attacker to sleep until the victim commits. The per-
formance of the safe victim code on TxOS is statistically
indistinguishable from the vulnerable victim on Linux.

To demonstrate that TxOS improves robustness while
preserving simplicity for signal handlers, we reproduced
two of the attacks described by Zalewksi [19]. The
first attack is representative of a vulnerability present in
sendmail up to 8.11.3 and 8.12.0.Beta7, in which an
attacker induces a double-free in a signal handler. The
second attack, representative of a vulnerability in the
screen utility, exploits lack of signal handler atom-
icity. Both attacks lead to root compromise; the first
can be fixed by using the sigaction API rather than
signal, while the second cannot. We modified the sig-
nal handlers in these attacks by wrapping handler code
in a sys_xbegin, sys_xend pair, which provides
signal handler atomicity without requiring the program-
mer to change the code to use sigaction. In our ex-
periments, TxOS serializes handler code with respect to
other system operations, preventing both attacks.

5 Toward simpler, scalable system calls

System calls like rename and open have been used as
ad hoc solutions for the lack of general-purpose atomic
actions. These system calls have strong semantics (a
rename is atomic within a file system), resulting in

complex implementations whose performance does not
scale. As an example in Linux, rename has to serial-
ize all cross-directory renames on a single file-system-
wide mutex because finer-grained locking would risk
deadlock. The problem is not that performance tuning
rename is difficult, but it would substantially increase
the implementation complexity of the entire file system,
including unrelated system calls.

Transactions allow the programmer to combine simpler
system calls to perform more complex operations, yield-
ing better performance scalability and a simpler imple-
mentation. Figure 4 compares the unmodified Linux im-
plementation of rename to calling sys_xbegin(),
link, unlink, and sys_xend()in TxOS. In this
micro-benchmark, we divide 500,000 cross-directory
renames across a number of threads.

TxOS has worse single-thread performance because it
makes four system calls for each Linux system call.
TxOS quickly recovers, performing within 6% at 2
CPUs and out-performing rename by 3.9× at 8 CPUs.
The difference in scalability is directly due to imple-
menting transactions with fine-grained locking, whereas
Linux must use coarse-grained locks to maintain the fast
path for rename and keep its implementation complex-
ity reasonable. While this experiment is not represen-
tative of real workloads, it shows that solving consis-
tency problems with modestly complex system calls like
rename will either harm performance scalability or
introduce substantial implementation complexity. Be-
cause of Linux’s coarse-grained locks, TxOS’ atomic
link/unlink pair outperforms the Linux non-atomic
link/unlink pair by 1.9× at 8 CPUs.

A kernel that provides a smaller set of simple calls
as well as a facility to compose them into more com-
plex operations will be more maintainable than a ker-
nel that supports a wide array of point solutions. More-
over, the complexity of managing fine-grained locking
inside of transactions is encapsulated inside a small code
base. In TxOS, the locking code inside a given system
call is generally not complicated by transaction support.
While adding transactions to the kernel may seem to in-
crease the complexity of the system at first blush, TxOS
demonstrates that the complexity can be tightly encap-
sulated and transactions can obviate the need for other
complex or poor-performing code.

12



6 Design alternatives

The problems that system transactions solve are cur-
rently addressed to some degree by file locking and
transactional file systems. However, neither approach
is a complete solution, as explained in this section.

File locking File locking in Linux takes many forms:
mandatory locking, advisory locking, and lock files.
Lock files and advisory locking both provide concur-
rency control at the system level when all programs re-
spect the locks; however, one cannot prevent buggy or
malicious applications from ignoring these locks and ac-
cessing the data concurrently.

The reason advisory locking is popular is that manda-
tory locking can lead to denial of service on the system.
The OS can revoke a mandatory lock, but likely at the
cost of corrupting the underlying file.

File locking in Linux is associated with a file inode;
this means that file locking cannot protect the file sys-
tem namespace against TOCTTOU attacks. Finally, it is
worth emphasizing that file locking only addresses con-
currency control for system resources. File locking does
not provide the ability to recover from a failed operation,
which is useful for problems like software installation.

Transactional file systems The examples in the pa-
per introduction focus on the file system, which is the
source of the largest pain points. A transactional file
system, such as TxF adopted by Windows Vista [14],
can address some of the key issues. Unfortunately, im-
plementing transactions within a particular file system
(below the virtual filesystem (VFS) layer) undermines
API simplicity and leads to usability problems.

When transactions are implemented in a specific file
system, the key problem is file system state propagat-
ing into other volatile resources which cannot be rolled
back by the file system if a transaction fails. State flow-
ing from the file system to other resources leads to ei-
ther conservative restrictions on transactions or specula-
tive state leaking from an aborted transaction. For ex-
ample, memory mappings are not under the control of
the filesystem, and therefore most transactional file sys-
tems cannot allow a transactionally written file to also
be memory mapped and executed. Linux software in-
stallers commonly unpack a set of files and then config-
ure the software with post-installation scripts included

in the software package. The conservative prohibition
against executing transactionally written binaries, com-
mon in transactional file systems, prevents rolling back
an install that can’t be configured properly. As a sec-
ond example, file handles are not visible to a file sys-
tem and they do not roll back even if the backing store
rolls back. For this reason, the Windows transactional
file system requires that file handles used in a transac-
tion be closed when a transaction ends and then sub-
sequently re-opened when they are again needed. Fi-
nally, running processes can observe transactional file
system data and propagate it (or results computed us-
ing it as inputs) through a pipe to new child process.
Returning again to the post-installation script example,
rolling back modifications to the file system does not kill
the running post-installation script nor does it stop any
daemons it may have launched or undo requests it sent
to another running service. Compensating for these ac-
tions in userspace is difficult; the simplest programming
model requires more robust kernel support.

Implementing transactions as a first-class kernel primi-
tive simplifies the programming model for developers;
treating transactions as a core kernel abstraction bet-
ter encapsulates implementation details. For example,
most transactional file systems expose locking details
to users, often in the form of forcing them to reason
about the risk of deadlock between completely unrelated
programs. The TxOS prototype encapsulates all lock-
ing details within the kernel, guaranteeing the user that
transactions cannot deadlock with each other. Trans-
action isolation in TxOS can still lead to starvation in
some pathological cases, such as a long-running transac-
tion denying access to a file or short transactions repeat-
edly aborting a longer transaction before it can commit.
Rather than expose locking or other low-level system
details to users as a way to enforce transaction schedul-
ing policy, TxOS allows system administrators to set
high-level policies through a file in /proc. For in-
stance, the default policy is to favor the transaction with
the highest scheduling priority, but this can be replaced
with a policy that favors the oldest transaction. Selecting
a high-level contention management policy is much less
error-prone than managing kernel locks in userspace.

A final argument for generalized transaction support in
the kernel is that transactions are a useful feature for all
Linux file systems. The TxOS design implements file
system transactions primarily in the VFS layer, leaving
minimal adoption work for a specific file system. The

13



main onus on a specific file system is ensuring atomic
commit of data to disk, which is already provided by
common techniques such as journaling. As a proof
point, we implemented a transactional ext3 file sys-
tem in one developer month on TxOS. Transaction sup-
port can be generalized in the VFS layer while imposing
minimal development effort on individual file systems.

7 Limitations and future work

TxOS does not yet provide transactional semantics for
several classes of OS resources. Currently, TxOS either
logs a warning or aborts a transaction that attempts to ac-
cess an unsupported resource: the programmer specifies
the behavior via a flag to sys_xbegin(). Among the
unsupported resources are the network, certain classes
of inter-process communication, and user interfaces.

Ongoing work on TxOS is focused in three directions.
First, we plan to study additional applications that can
benefit from transactions. Second, we plan to add sup-
port for additional kernel abstractions and resources.
Third, we would like to find additional optimizations to
improve the performance of the TxOS prototype.

8 Conclusion

TxOS demonstrates that transactions are a practical ab-
straction a widely-deployed, commodity OS. The code
changes required are substantial, but so are the bene-
fits. The source code for TxOS is available at http:
//txos.code.csres.utexas.edu.

References

[1] N. Borisov, R. Johnson, N. Sastry, and D. Wag-
ner. Fixing races for fun and profit: How to abuse
atime. In USENIX Security, 2005.

[2] D. Dean and A. J. Hu. Fixing races for fun and
profit: how to use access(2). In USENIX Security,
pages 14–26, 2004.

[3] M. Herlihy and E. Koskinen. Transactional boost-
ing: A methodology for highly-concurrent trans-
actional objects. In PPoPP, 2008.

[4] M. Kulkarni, K. Pingali, B. Walter, G. Rama-
narayanan, K. Bala, and L. P. Chew. Optimistic
parallelism requires abstractions. In PLDI, 2007.

[5] J. Larus and R. Rajwar. Transactional Memory.
Morgan & Claypool, 2006.

[6] P. E. McKenney. Exploiting Deferred Destruction:
An Analysis of Read-Copy Update Techniques in
Operating System Kernels. PhD thesis, 2004.

[7] W. S. McPhee. Operating system integrity in OS-
/VS2. IBM Systems Journal, 13(3):230–252, 1974.

[8] G. C. Necula, S. Mcpeak, S. P. Rahul, and
W. Weimer. CIL: Intermediate language and tools
for analysis and transformation of C programs. In
ICCC, pages 213–228, 2002.

[9] E. B. Nightingale, P. M. Chen, and J. Flinn. Spec-
ulative execution in a distributed file system. In
SOSP, 2005.

[10] NIST. National Vulnerability Database. http:
//nvd.nist.gov/, 2010.

[11] D. E. Porter, O. S. Hofmann, C. J. Rossbach,
A. Benn, and E. Witchel. Operating system trans-
actions. In SOSP, 2009.

[12] D. E. Porter and E. Witchel. Operating systems
should provide transactions. In HotOS, 2009.

[13] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S.
Hofmann, A. Bhandari, and E. Witchel. MetaT-
M/TxLinux: Transactional memory for an operat-
ing system. In ISCA, 2007.

[14] M. Russinovich and D. Solomon. Windows Inter-
nals. Microsoft Press, 2009.

[15] F. Schmuck and J. Wylie. Experience with trans-
actions in QuickSilver. In SOSP. ACM, 1991.

[16] D. Tsafrir, T. Hertz, D. Wagner, and D. D. Silva.
Portably preventing file race attacks with user-
mode path resolution. Technical report, IBM Re-
search Report, 2008.

[17] M. J. Weinstein, J. Thomas W. Page, B. K.
Livezey, and G. J. Popek. Transactions and syn-
chronization in a distributed operating system. In
SOSP, 1985.

[18] C. P. Wright, R. Spillane, G. Sivathanu, and
E. Zadok. Extending ACID semantics to the file
system. Trans. Storage, 3(2):4, 2007.

[19] M. Zalewski. Delivering signals for fun and profit.
2001.

14

http://txos.code.csres.utexas.edu
http://txos.code.csres.utexas.edu
http://nvd.nist.gov/
http://nvd.nist.gov/

	Introduction
	TxOS Overview
	System transactions for system state
	Communication model
	Managing transactional state
	Interoperability and fairness

	Implementation
	Object versioning
	Impact of data structure changes
	Lists

	Evaluation
	Single-thread system call overheads
	Applications and micro-benchmarks
	Software installation
	Transactional LDAP server
	Transactional ext3
	Eliminating race attacks

	Toward simpler, scalable system calls
	Design alternatives
	Limitations and future work
	Conclusion

