
Using Java to Teach Networking Concepts
With a Programmable Network Sniffer

Michael J Jipping

Department of Computer Science
Hope College

Holland, MI 49423
jipping@cs.hope.edu

Agata Bugaj
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

abugaj@andrew.cmu.edu

Liliyana Mihalkova
Department of Computer Science

Hope College
Holland, MI 49423

mihalkova@cs.hope.edu

Donald E. Porter

Department of Mathematics and
Computer Science

Hendrix College
Conway, AR 72032

porterde@mercury.hendrix.edu

Abstract
A crucial part of the Networking course is the examination
of and experimentation with network traffic data. Most
standalone network traffic sniffers are quite expensive and
those freely available on general purpose platforms (e.g.,
Linux or Windows) are quite cryptic. Because of this, we
have developed NetSpy: a Java-based network sniffer that
allows plug-in Java modules to analyze network data.
These modules are written by students as part of their
experimentation with traffic data. This paper describes the
NetSpy system and the way we use this in Networking
class.
1 Introduction
In the computer science curriculum, the Networking course
stands out by virtue of its requirements. The course
requires that a lot of difficult subject matter be delivered to
the student. We believe that some of this material needs to
be delivered via “hands-on” active learning activities.
Active learning and experimentation in a Networking
course is typically done by examining a network and
interpreting the applications and protocols that run across
that network.
Unfortunately, tools that facilitate network experimentation
are either expensive or difficult to use in a class setting.
Special purpose tools to sniff networks are quite expensive

and do not allow general purpose programming to analyze
network data. Tools available on Linux or Windows
platforms generate cryptic output that is not easily
deciphered or analyzed.
This paper documents a system designed to teach
Networking concepts and analysis by using Java to
program a plat form that delivers network data. We have
developed a system called NetSpy that consists of a
network sniffing platform coupled with a Java plug-in
interface. Using this interface, students can write Java
plug-in modules that can receive network data for analysis.
NetSpy has been implemented for handheld computers,
which extends its usefulness and experimentation ability.
This paper will present some background on NetSpy,
followed by an examination of its system components. We
will consider an example of a NetSpy Java module and
conclude with some discussion on class use.
2 Background and Motivation
A key to the Networking course is network data analysis.
In our course, we would like to perform activities like
traffic measurement, observing and analyzing network
protocols in detail, and developing solutions to network
problems.
However, network analysis is difficult to do, especially if
students need to develop all aspects of the analysis tools. If
students program network sniffing themselves, for
example, it is very easy to get mired in the data structures
and system interfaces needed to properly fetch a network
packet and extract data that can be analyzed. Students
should focus on the analysis itself, not the mechanics of
traffic sniffing.
Very little software exists to assist a student in this
endeavor. For a general purpose platform, there are indeed
tools that will watch network traffic. Applications such as
snoop on Solaris platforms and tcpdump [3] on Linux are

very effective in fetching data traffic and displaying the
contents of each network packet. Unfortunately, these
tools display the data in a cryptic manner and are not at all
programmable. Tools such as etherape [1,2] and ethereal
[4] on Linux devices attempt to present network data in a
format that is more easily analyzed and understood, but
again do not allow for general analysis through custom
designed programs
We seek a platform for network analysis that provides the
following functionality:

• Network data retrieval: The platform should
accurately read network packets and present these
packets to the user in a clean, usable manner.

• Ability to filter network data: The platform
should be able to filter the network packet data to
present only the specific type of data requested by
the user.

• Network data object orientation: For intuitive
analysis, the platform should present network data
to the user in an object-oriented manner, with a
clean, usable method interface.

• Progammable network data analysis: The
platform should allow the user to use a wide range
of custom-built, programmable analysis tools to
examine network data.

As an added bonus, the ability to use a handheld computer
platform would be very beneficial. This would enable
students to sample data from various sources all over
campus – not just from a single computer laboratory or
classroom.
3 The NetSpy System
The NetSpy system is a network data gathering platform,
written in Java, that accepts Java programs as data analysis
modules. Since we constructed it to abide by the criteria
we established, the goals of the NetSpy system correspond
to them: it accurately retrieves network data, allows the
user to focus only on specific data, provides an object-
based interface to Java-based analysis modules that the user
provides. In addition, it runs on a Sharp Zaurus SL-5500
Linux handheld computer as well as other desktop
platforms.
NetSpy uses PCAP as the foundation for reading network
data. It allows the user to build simple filters and combine
them into more complex filtering objects. Its structure and
use is quite intuitive. We will take a closer look at each of
the aspects of NetSpy in this section.
3.1 The NetSpy Foundation
PCAP is a packet capture library that provides a uniform
interface to the underlying packet capture applications,
which vary with different operating system
implementations. PCAP is used in packet analysis
applications including tcpdump, ethereal, and etherape.
PCAP is also the recommended starting point for the

novice network analysis writer. It provides the
programmer with a C-style character array containing the
data of a packet, which the user then parses.
Although PCAP abstracts many details of packet capture
nicely, it does not hide any facet of network data or cross-
platform programming in C, especially the varying size of a
given data type or even a byte. In all network protocols, all
data sizes are in terms of bits or octets, which do not differ.
In nearly all network protocols, data is always represented
in big endian byte order. Thus, a language such as Java,
which guarantees a constant size and byte order of its data
types, is better suited for packet representation.
Packet retrieval in NetSpy is implemented by its Network
class. This class of NetSpy gets a packet buffer from
PCAP. The classe then parses the packet buffer using
C/C++ native methods through Java Native Interface,
placing the data into appropriately sized Java data types.
Consider an Ethernet header, which consists of a
Destination Address (six octets), Source Address (six
octets), frame type (two octets), and a variable amount of
data (ignoring the preamble and checksum, which are
dropped by pcap). NetSpy provides the following interface
to this data:
public class Ethernet{
 public Ethernet(Packet p);
 //constructor, which takes an unparsed
Packet, from the
 //Network class, as an argument
 public byte[] getDestinationAddress();
 public byte[] getSourceAddress();
 public short getType();
 public byte[] getDataBytes();
}

The user could then try to obtain the data of a higher level
protocol, IP for example, from the byte array returned by
getDataBytes(), which is essentially what PCAP requires of
its users. Because network protocols are essentially static,
NetSpy can perform the task of packet parsing for the user
through object-oriented design. NetSpy's packet classes are
designed so that each header packet takes a packet object of
the immediately lower protocol as a constructor argument.
In this case, class IP would take a Data Link Layer Header
(Ethernet or 802.11 Data Frame) as an argument and then
provide a similar interface to its contents.
The NetSpy packet system provides an intuitive and simple
API to the writer of a module. If a student wanted to obtain
the destination port of each TCP packet that came across
the network, for example, the code would look something
like this:
 short port;
 Packet p = _packetQueue.dequeue();
 Ethernet e = new Ethernet(p);
 if(e.getType() == 0x0800){
 IP ip = new IP(e);

 if(ip.getProtocol() == 6){
 TCP tcp = new TCP(ip);
 port = tcp.getDestinationPort();
 }
 }

3.2 Network Data Retrieval Components
The main components of the network listener core of
NetSpy are the Filter, the Operation, the Agent, the
AgentMap, and the Dispatcher.
The Filter class provides filtering functionality. Each Filter
is defined through the graphical user interface and is
constructed using a string of arguments that contains the
filtering criteria. Users can filter by protocol, such as
Ethernet, IP, TCP, and UDP, by host name, port number,
packet length, and by any combination of these criteria.
Moreover, individual filters can be combined using
Boolean operations, such as AND, OR, AND NOT, and
OR NOT, thus producing composite filters. The Filter class
represents each composite filter as a tree structure. This
model not only improves the efficiency of filter evaluation,
but also preserves the correct order of evaluation of the
constituent filters, which can be reproduced by a postorder
traversal of the filter tree. This allows the Filter class to
represent composite filters of any size and complexity.
From a user’s perspective, because the Filter object
encapsulates both filters and composite filters, no
difference exists between these two entities.
The Operation is an abstract class that hides the convoluted
details of thread management from the user and provides a
template for defining custom modules for packet analysis.
By extending the Operation class and implementing its
void task() method, users can easily program their own
operations that define the actions to be performed on
arriving packets.
An Agent is the union of an Operation and a Filter. Netspy
supports multiple Agents simultaneously and allows users
to activate and deactivate them as needed. To manage the
Agents that are currently present, Netspy employs the
services of the AgentMap class, which maintains a list of
all Agents and Filters currently defined in the system. Each
Filter and each Operation can be part of zero or more
Agents, whereas each Agent should contain exactly one
Filter and one Operation. The AgentMap provides methods

for managing a single agent, such as creating an agent or
changing the filter of an agent in real time. It also provides
functions for managing all the agents as a group, such as
saving and retrieving agents.
The Dispatcher provides the link between the Network
layer and the Agents. Its main function is to check each
packet it receives from the Network against the Filter of
each of the active Agents in turn, and if the packet passes,
to forward a copy of it to the corresponding Operation.
3.3 Using NetSpy
NetSpy is used through its graphical user interface, which
makes the program easy to use and understand. Not only is
the GUI very ‘user-friendly’ but it also lets the user
experience all of NetSpy’s many features.
The main GUI of NetSpy, shown in Figure 1, contains five
buttons entitled Filter, Agent, Start, Stop, and Help. The
Filter and Agent buttons contain all functions that any
Filter or Agent can have, respectively. The Start and Stop
button control network packet flow. The Help button
contains information about how to use NetSpy.
NetSpy provides many functions for the Filter. The user
can define a filter, delete a filter and even combine two
filters into a composite filter. Figure 2 shows a snapshot of
the filter cration process.

Figure 1. Main NetSpy User Interface

The Agent also has many functions. An agent can be
created, deleted, changed, stopped, restarted, renamed, and
saved. Each of the Agent and Filter functions can be
performed through a simple step-by-step procedure
provided by the GUI.
One of the major advantages of using NetSpy compared to
other sniffing programs is the option to create Operations.
Operations represent data analysis in any way that the user
deems fit. We have tried to minimize the work a user must
do to provide an Operation; all that needs to be done is the
writing of a single function. The Operation class is an
abstract class that extended the system Thread class. A
data analysis module, then, must extend the Operation
class, and a single function called by Operation’s run()
method is what needs to be defined. The Operation begin
extended has access to a drawing surface, all network data
objects, and the main program’s GUI objects.
Once defined, a user-supplied Operation is executed by
pairing it with a filter and defining an agent. When the
agent is started, the operation starts to analyze all the
packets that are passing through the filter. The analysis can
consist of a bar graph, a simple counter, writing
information to a file, creating a diagram of some kind or
any other object which can be used to analyze network
traffic.
4 Using NetSpy as a Teaching Tool
Because of the GUI as well as the opportunity to create
operations, NetSpy provides much more flexibility than
other network sniffing programs. It has many unique
applications that others do not. There are several ways that

we have and will be using NetSpy in a classroom setting.
Network analysis and experimentation: Through NetSpy, a
user has access to a complete set of network data – all
layers in the ISO network model stack. This means that
protocol analysis and statistics calculation are possible. We
are using the following projects with NetSpy:

• Counting packets: As a first module, students are
asked to write a class that simply counts packets
and categorizes the protocols. Students are
surprised as they do the calculations on just how
much data goes across a network. Figure 3 holds
an example of this type of NetSpy module.

• Protocol reconstruction: Students write modules
that reconstruct a network session of some sort
based on the exchange of protocols. One example
is the client/server conversation in Web page
requesting. This is done by simply writing lines of
client request and server response to the screen.
Another example (that intrigues students) is the
reconstruction of a Telnet protocol session in real
time by displaying a “terminal window” and
echoing the textual traffic.

Network data sampling: For this exercise, students use a
protocol counting module – one that simply writes numbers
to a log file – and uses a handheld computer to do protocol
walking. They sample data from all over campus, noting
the different types of network applications in different
areas. In their writeups and subsequent discussion, we
examine differences and make predictions of network
requirements based on type of usage and time of day.
Network administration: There are many network
administration tools that claim to detect certain network
conditions – like traffic congestion or uninvited intruders.
How these tools work is interesting and NetSpy can be
used to detect the conditions that these administration tools
do. Many of these tools are open-source, which allows
students to duplicate some of their functionality in a
NetSpy module.

 Figure 2. Filter Creation Interface Figure 3: Student Project on Protocol Counting

Application debugging: Many network-based applications
are difficult to write because the protocol exchanges are
hard to watch and debug. Since filtering is built into
NetSpy, modules can be written to track and interpret
specific network protocols connected with certain
applications.
5 Caveats and Conclusion
NetSpy is an effective tool for allowing students to do
protocol analysis and network experimentation. It allows
users to write their own analysis tools and protocol
collectors and, in doing so, students are able to understand
and analyze network data.
We have learned much in our experience with snooping on
live network data. There are two caveats that users of
NetSpy – and all network snoopers – should be aware of.

• Students require stern warnings about privacy.
Obviously, privacy issues feature prominently in
any activity that involves network snooping.
Students tend to focus on the joy of possibly
finding some illicit data rather than on protecting a
network user’s rights. This gives the instructor a
great opportunity for discussions on network
privacy, both from a snooping perspective and
from a more global perspective.

• Inform the campus Computer Center of your
experimentation activities. In all likelihood, a
computer center will have snooping detection
programs running. NetSpy projects may even
violate campus security policies. It is a good idea
to discuss projects with computer center personnel
before engaging in them.

For the future, we wish to add wireless protocol objects to
NetSpy. Currently, NetSpy focuses on wired connectivity
– specifically on Ethernet connections. Since there are so
many wireless opportunities with handheld devices, we
hope to expand the reach of NetSpy to incorporate 802.11x
protocols.
References
[1] Cota, J.T., Implementicion de un Monitor Analizador

Grafico de Reden el Entorno Gnome, Final Report on
the Etherape Project, University of Seville, Spain, July
2001.

[2] Etherape Software Repository, available online:
http://etherape.sourceforge.net.

[3] TCPDUMP Public Repository available online:
http://www.tcpdump.org.

[4] The Ethereal Network Analyzer, available online:
http://www.zing.org.

