
How to Get More Value From
Your File System Directory Cache

Chia-Che Tsai, Yang Zhan, Jayashree Reddy, Yizheng Jiao, Tao Zhang,
and Donald E. Porter
Stony Brook University

{chitsai, yazhan, jdivakared, yjiao, zhtao, porter}@cs.stonybrook.edu

Abstract
Applications frequently request file system operations that traverse the file system directory
tree, such as opening a file or reading a file’s metadata. As a result, caching file system
directory structure and metadata in memory is an important performance optimization for
an OS kernel.

This paper identifies several design principles that can substantially improve hit rate
and reduce hit cost transparently to applications and file systems. Specifically, our direc-
tory cache design can look up a directory in a constant number of hash table operations,
separates finding paths from permission checking, memoizes the results of access control
checks, uses signatures to accelerate lookup, and reduces miss rates through caching direc-
tory completeness. This design can meet a range of idiosyncratic requirements imposed by
POSIX, Linux Security Modules, namespaces, and mount aliases. These optimizations are
a significant net improvement for real-world applications, such as improving the throughput
of the Dovecot IMAP server by up to 12% and the updatedb utility by up to 29%.

1. Introduction
Operating System kernels commonly cache file system data and metadata in a virtual file
system (VFS) layer, which abstracts low-level file systems into a common API, such as
POSIX. This caching layer has become a ubiquitous optimization to hide access latency
for persistent storage technologies, such as a local disk. The directory cache is not ex-
clusively a performance optimization; it also simplifies the implementation of mount-ing
multiple file systems, consistent file handle behavior, and advanced security models, such
as SELinux [24].

Directory caches are essential for good application performance. Many common system
calls must operate on file paths, which require a directory cache lookup. For instance, be-
tween 10–20% of all system calls in the iBench system call traces do a path lookup [17].
Figure 1 lists the fraction of total execution time several common command-line applica-
tions spend executing path-based system calls (more details on these applications and the
test machine in §6). We note that these system calls include work other than path lookup,
and that these numbers include some instrumentation overhead; nonetheless, in all cases

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815405

0%

20%

40%

60%

80%
%

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
access/stat
open
chmod/chown
unlink

Figure 1: Fraction of execution time in several common utilities spent executing path-based
system calls with a warm cache, as measured with ftrace.

0.6005

0.4438

0

500

1000

1500

2000

2500

3000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2010 2011 2012 2013 2014 2015 2016

L
oC

 C
ha

ng
ed

 fr
om

Pr
ev

io
us

 K
er

ne
l

st
at

 S
ys

te
m

 C
al

l L
at

en
cy

(µ

s)

Release Year of Linux Kernel Versions

stat Syscall Latency (µs)
Changed LoC

v3.14

v3.14
opt

v2.6.36

v3.0 v4.0

Figure 2: Latency of stat system call with a long path
XXX/YYY/ZZZ/AAA/BBB/CCC/DDD/FFF on Linux over four years (lower is
better), as well as the churn within the directory cache code (all insertions in dcache.c,
dcache.h, namei.c, namei.h and namespace.c). Our optimized 3.14 kernel
further reduces stat system call latency by 26%.

except rm, the system call times and counts are dominated by stat and open, for which
path lookup is a significant component of execution time. For these applications, path-
based system calls account for 6–54% of total execution time. This implies that lowering
path lookup latency is one of the biggest opportunities for a kernel to improve these appli-
cations’ execution time.

Unfortunately, even directory cache hits are costly—0.3–1.1 µs for a stat on our test
Linux system, compared to only .04 µs for a getppid and 0.3 µs for a 4 KB pread.
This issue is taken particularly seriously in the Linux kernel community, which has made
substantial revisions and increasingly elaborate optimizations to reduce the hit cost of its
directory cache, such as removing locks from the read path or replacing lock ordering
with deadlock avoidance in a retry loop [11, 12]. Figure 2 plots directory cache hit latency
against lines of directory cache code changed over several versions of Linux, using a path-
to-inode lookup microbenchmark on the test system described in Section 6. These efforts
have improved hit latency by 47% from 2011 to 2013, but have plateaued for the last three
years.

The root of the problem is that the POSIX path permission semantics seemingly require
work that is linear in the number of path components, and severely limit the kernel
developer’s implementation options. For instance, in order to open file /X/Y/Z one must
have search permission to parent directories /, /X, and /X/Y, as well as permission to
access file Z. The Linux implementation simply walks the directory tree top-down to check
permissions. Unfortunately, when the critical path is dominated by walking a pointer-based
data structure, including memory barriers on some architectures for multi-core consistency,
modern CPUs end up stalling on hard-to-prefetch loads. Moreover, because so many Linux
features are built around this behavior, such as Linux Security Modules (LSMs) [47],
namespaces, and mount aliases, it is not clear that any data-structural enhancements are
possible without breaking backward-compatibility with other Linux kernel features. A
priori, it is not obvious that a faster lookup algorithm, such as a single hash table lookup,
can meet these API specifications and kernel-internal requirements; to our knowledge, no
one has tried previously.

This paper proposes a decomposition of the directory cache, which allows most lookup
operations to execute with a single hash table lookup (§3), as well as optimizations to reduce
the miss rate based on information that is already in the cache, but not used effectively (§5).
Our design maintains compatibility (§4) through several essential insights, including how
to separate the indexing of paths from checking parent permissions, and how to effectively
and safely memoize the results of access control checks.

Our optimizations improve the performance of frequent lookup operations, but introduce
several costs, described in §3 and measured in §6, which we believe are acceptable and a net
improvement for applications. First, these optimizations slow down infrequent modifica-
tions to the directory hierarchy, such as rename, chmod, and chown of a directory. How-
ever, these slower operations account for less than .01% of the system calls in the iBench
traces [17]. Second, the memory overheads of the dcache are increased. Third, lookup has
a probability of error from signature collisions that can be adjusted to be negligible and
within acceptable thresholds widely used by data deduplication systems [13, 34, 40, 50].
In the micro-benchmark of Figure 2, our directory cache optimizations improve lookup
latency by 26% over unmodified Linux.

This paper demonstrates that these techniques improve performance for applications that
use the directory cache heavily, and the harm is minimal to applications that do not benefit.
These changes are encapsulated in the VFS—individual file systems do not have to change
their code. This paper describes a prototype of these improvements implemented in Linux
3.14. Section 2 explains that the directory cache structure of Mac OS X, FreeBSD, and
Solaris are sufficiently similar that these principles should generalize.

The contributions of this paper are as follows:
• A performance analysis of the costs of path lookup and the opportunities to improve

cache hit latency.
• A directory cache design that improves path lookup latency with a combination of

techniques, including:
Indexing the directory cache by full path, reducing average-case lookup from linear
to constant in the number of path components.
A Prefix Check Cache (PCC) that separates permission checking from path caching.
The PCC memoizes permission checks, and is compatible with LSMs [47].
Reducing the cost of checking for hash bucket collisions with path signatures.

• Identifying opportunities to leverage metadata the kernel already has to reduce miss
rates, such as tracking whether a directory is completely in cache.

• Carefully addressing numerous, subtle edge cases that would frustrate rote application
of these techniques, such as integration with symbolic links and Linux namespaces.

• A thorough evaluation of these optimizations. For instance, our optimizations improve
throughput of the Dovecot IMAP server by up to 12% and latency of updatedb by up to
29%.

2. Background
This section first reviews the Unix directory semantics which a directory cache must sup-
port; and then explains how directory caches are implemented in modern OSes, including
Linux, FreeBSD, Solaris, Mac OS X, and Windows.

2.1 Unix Directory Hierarchy Semantics
The most common operation a directory cache performs is a lookup, which maps a path
string onto an in-memory inode structure. Lookup is called by all path-based system
calls, including open, stat, and unlink. Lookup includes a check that the user has
appropriate search permission from the process’s root or current working directory to the
file, which we call a prefix check.

For instance, in order for Alice to read /home/alice/X, she must have search
permission on directories /, /home, and /home/alice, as well as read permission on
file X. In the interest of frugality, the execute permission bit on directories encodes search
permission. Search is distinct from read permission in that search only allows a user to
query whether a file exists, but not enumerate the contents (except by brute force) [35].
SELinux [24] and other security-hardened Linux variants [1, 47], may determine search
permission based on a number of factors beyond the execute bit, such as a process’s role,
or the extended attributes of a directory.

2.2 Linux Directory Cache
The Linux directory cache, or dcache, caches dentry (directory entry) structures, which
map a path to an in-memory inode1 for the file (or directory, device, etc). The inode stores
metadata associated with the file, such as size, permissions, and ownership, as well as a
pointer to a radix tree that indexes in-memory file contents [4]. Each dentry is tracked by
at least four different structures:
• The hierarchical tree structure, where each parent has an unsorted, doubly-linked list of

its children.
• A hash table, keyed by parent dentry virtual address and the file name.
• An alias list, tracking the hard links associated with a given inode.
• An LRU list, used to compress the cache as needed.

Linux integrates the prefix check with the lookup itself, searching paths and checking
permissions one component at a time. Rather than using the tree structure directly, lookup
searches for each component using the hash table. For larger directories, the hash table
lookup will be faster than searching an unsorted list of children. The primary use for the
hierarchical tree structure is to evict entries bottom-up, in order to uphold the implicit
invariant that all parents of any dentry must also be in the cache. Although all dentries are
stored in a hash table keyed by path, the permission check implementation looks up each
path component in the hash table.

Linux stores negative dentries, which cache the fact that a file is known not to exist on
disk. A common motivating example for negative dentries is searching for a file on multiple
paths specified by an environment variable, such as LD LIBRARY PATH.

Current dcache optimizations. Much of the dcache optimization effort illustrated in
Figure 2 has improved cache hit latency, primarily by reducing the cost of synchronization
in the lookup function with read-copy update (RCU) [26, 27]. RCU eliminates the atomic
instructions needed for a read lock and for reference counting individual dentries, pushing
some additional work onto infrequent code that modifies the directory structure, such as
rename and unlink.

The most recent Linux kernels also use optimistic synchronization when checking path
permissions, using sequence locks (essentially version counters), to detect when the subtree
might have changed concurrently with the traversal. If the optimistic fast path fails because

1 Other Unix systems call the VFS-level representation of an inode a vnode.

of a concurrent modification, the kernel falls back on a slow path that uses hand-over-hand
locking of parent and child dentries.

Because the Linux developer community has already invested considerable effort in
optimizing its dcache, we use Linux as a case study in this paper. The optimizations in this
paper are not Linux-specific, but in some cases build on optimizations that other kernels
could adopt.

2.3 Other Operating Systems
FreeBSD, OS X, and Solaris. These Unix variants all have a directory cache that is
structurally similar to Linux’s [25, 28, 39]. Each system organizes its directory cache with a
hash table, checks paths one component at a time, and stores negative dentries. Here we use
FreeBSD as a representative example of the BSD family, and the most popular according
to recent surveys [6]. The OS X kernel adopted its file system from FreeBSD, and has not
substantially changed their behavior with respect to directory metadata caching [31].

Linux is distinctive in that the hit path avoids calling the low-level file system, whereas
other Unix variants always call the low-level file system. A low-level file system may opt
out of the default structures if it has a more specialized structure, say for large directories,
or it may directly implement its own lookup function. Directly managing a file system’s
portion of the cache is problematic because mount points are not visible to the low-level file
system. Several previous works have found this restriction onerous, especially for network
file systems [14]. These Unix variants also do not use optimistic synchronization in their
dcaches, but this is not fundamental.

The Solaris dcache, called the Direct Name Lookup Cache (DNLC), features sophisti-
cated cache management heuristics, such as weighing relevance as well as temporal locality
in replacement decisions [25] Solaris also has a simpler reference management system for
cached paths than FreeBSD (and more similar to Linux) [16].

Windows. Essentially all OS API abstractions in Windows are represented with objects,
managed by the Object Manager [36]. The Object Manager is the closest analog to the Unix
directory cache, which tracks hierarchical paths and permissions. Unfortunately, public
documentation on Windows internals is limited, especially so for internal data structures
and caching policies for metadata not in active use, so a detailed comparison is difficult.
Nonetheless, we can compare the impact of some high-level design choices.

First, Windows only supports one root file system format, and a very limited number of
other file systems. Thus, there is less value in a general-purpose, in-memory organization
for file system metadata, and Windows does not have vnodes, dentries, or other VFS-level
generalizations. Instead, caching is primarily the responsibility of the file system, and on-
disk and in-memory structure layouts may be the same.

Unlike Unix variants, when a Windows file system path is not cached in the Object
Manager, the low-level file system is responsible for resolving the full path, rather than
one component at a time. For this to work, Windows NT also propagates parent directory
permissions to each child’s on-disk metadata at creation or modification time [41]. This
approach allows for direct lookup, but also creates a subtle manageability problem. Suppose
Alice makes her home directory world readable: should this change be propagated to
all sub-directories? To answer this question, Windows adopts an error-prone heuristic of
not changing manually-modified child permissions. This paper shows how to keep the
performance benefits of direct lookup in memory without the manageability issues of
storing propagated hierarchical permissions on disk.

2.4 Opportunities for Improvement
Figure 3 shows the time spent in the principal components of a path lookup in Linux, for
four paths of increasing lengths. The first-order impact on lookup time is the length of the
path itself, which dictates how many times each component will be hashed, looked-up in
the hash table, and execute a permission check on each directory’s inode. These costs are
linear in the number of path components.

0

100

200

300

400

500

600

Path1 Path2 Path3 Path4

Pr
in

ci
pa

l L
oo

ku
p

C
om

po
ne

nt
s (

ns
)

Initialization
Permision Check
Path Scanning & Hashing
Hash Table Lookup
Finalization

unmod opt unmod opt unmod opt unmod opt

Path1: FFF Path2: XXX/FFF Path3: XXX/YYY/ZZZ/FFF
Path4: XXX/YYY/ZZZ/AAA/BBB/CCC/DDD/FFF

Figure 3: Principal sources of path lookup latency in the Linux 3.14 kernel. Lower is better.

The hit latency optimizations described in this paper make most of these operations
constant time, except for hashing, which is still a function of the length of the path.

3. Minimizing Hit Latency
This section describes algorithmic improvements to the dcache hit path. In the case of a
cache hit, one of the most expensive operations is checking whether a process’s credentials
permit the process to search the path to a dentry top-down (called a prefix check). This
section shows how the hit latency can be significantly reduced by caching prefix check
results. This section explains the optimization, how it is integrated into the existing Linux
directory cache framework, how these cached results are kept coherent with other file
system operations, and how we use path signatures to further accelerate lookup.

3.1 Caching Prefix Checks
Like many Unix variants, Linux stores cached path-to-inode mappings (dentries) in a hash
table (§2.2). This hash table is keyed by a combination of the virtual address of the parent
dentry and the next path component string, illustrated in Figure 4. Virtual addresses of
kernel objects do not change over time and are identical across processes.

In practice, prefix checks have a high degree of spatial and temporal locality, and
are highly suitable for caching, even if this means pushing some additional work onto
infrequent modifications of the directory structure (e.g., rename of a directory). RCU
already makes this trade-off (§2.2).

In order to cache prefix check results, we must first decouple finding a dentry from the
prefix check. We added a second, system-wide hash table exclusively for finding a dentry,
called the direct lookup hash table (DLHT). The DLHT stores recently-accessed dentries
hashed by the full, canonicalized path. A dentry always exists in the primary hash table
as usual, and may exist in the DLHT. The DLHT is lazily populated, and entries can be
removed for coherence with directory tree modifications (§3.2).

Each process caches the result of previous prefix checks in a prefix check cache (PCC),
associated with the process’s credentials (discussed further in §4.1), which can be shared
among processes with identical permissions. The PCC is a hash table that caches dentry
virtual addresses and a version number (sequence lock), used to detect stale entries (§3.2).
When a prefix check passes, indicating that the credentials are allowed to access the dentry,
an entry is added to the PCC; entries are replaced according to an LRU policy. A miss in
the PCC can indicate a permission denied or that the permission check has not executed
recently.

.

.

.

d_lookup(root,'foo')

Directory
Cache

walk('/foo/bar')

0x0001

0x0002

0x0003

0xFFFF

hash(root,'foo') hash buckets dentries

walk_fast('/foo/bar')
hash('/foo/bar')

0x001

0x002

0x003

0xFFF

Direct
Lookup
Hash
Table
(DLHT)

fast
dentries

Prefix
Check
Cache
(PCC)

current->cred

fastpath

slowpath

Figure 4: Optimized Linux Directory Cache Structure. dentries are chained in hash buckets.
To index the hash bucket for a target dentry, the original lookup routine d lookup uses a
hashing function with key as a combination of the pointer to parent directory and file name
(slowpath). Our fastpath hashes the full canonical path of target file to look up the dentry
in the Direct Lookup Hash Table, and checks the per-credential Prefix Check Cache.

Thus, given any path, the kernel has a fastpath that directly looks up the path in the
DLHT. If the fastpath hits in the DLHT, the dentry is then looked up in the process’s PCC.
If a PCC entry is found and the version counter matches the cached counter, the cached
prefix check result is used. If the fastpath lookup misses in the DLHT or PCC, or the version
counter in the PCC entry is older than the dentry, the code falls back on the original Linux
lookup algorithm (the slowpath), using the primary hashtable exclusively and traversing
one component at a time.

In the case of a relative path, such as foo/bar under directory /home/alice, we
effectively concatenate the relative path and the path of the current working directory. To
implement relative paths, Linux already stores a pointer to the dentry of the current
working directory in each process descriptor (task struct). Rather than memcpy the
strings, we store the intermediate state of the hash function in each dentry so that hashing
can resume from any prefix.

The current design includes two very infrequent edge cases. First, a dentry could be
freed and reallocated with stale PCC entries. We detect this case by initializing newly
allocated dentries with a monotonically increasing version number, allowing PCC entries to
detect staleness across reallocation. Freeing a dentry removes it from the DLHT. Second, a
version number can wrap around after every 232 initializations of new dentries or renames,
chmods, or chowns of non-empty directories; our design currently handles wrap-around by
invalidating all active PCCs.

Figure 5 illustrates the modifications to the Linux dentry structure. The fast dentry
stores the signature, flags, a sequence count, a mount point, lists for managing deep
directory entries (§5.2), and a list (hash chain) for adding the fast dentry to a DLHT
bucket. The PCC is added to the kernel credential structure (struct cred), and stores a
tunable number of tuples of dentry pointers and sequence numbers; the system is evaluated
with a PCC of 64 KB. Because the highest and lowest bits in each dentry pointer are
identical, the PCC only stores the unique pointer bits (8–39 in x86 64 Linux) to save space.

struct dentry
struct fast_dentry

INT flags INT seq

PTR hash_chain.prev
PTR hash_chain.next

signature[0-47]index
QWORD signature[48-111]
QWORD signature[112-175]
QWORD signature[176-239]

0

8

16

24

32

40

48

56

64

struct cred_pcc
sPTR dnt INT seqLRU sPTR dnt INT seqLRU

sPTR dnt INT seqLRU sPTR dnt INT seqLRU

INT seq sPTR dnt INT seqLRU

0

16

32

16R-16

16R
sPTR dnt

struct cred
PTR cred_pcccompare

reference

sPTR dir INT dir_seq

LRU

reference
others (up to 64bytes)

Figure 5: Data structures added for fast directory cache lookup. To support fastpath lookup,
we add a 88-byte fast dentry structure to the original dentry and a variable-sized PCC
structure into cred.

3.2 Coherence with Permission and Path Changes
When permissions on a directory or the directory structure are changed, such as with
chmod or rename, any cached prefix checks that include this directory must be inval-
idated. Our design ensures the safety of concurrent lookups and changes by invalidating
relevant PCC and DLHT entries before a change to the hierarchy, preventing stale slow-
path lookups from being re-cached, and leveraging VFS-level synchronization to ensure
correct slowpath behavior.

First, we ensure that a fastpath lookup cannot complete with stale data after a change
to the directory structure. Before a mutation, such as a rename or chmod, the operation
must recursively walk all children in the dcache and increment the fast dentry version
counter (seq). The fast dentry version counter is used by each process’s PCC to
detect changes to cached prefix checks on a lookup; incrementing this version counter
invalidates all PCC entries for that dentry without directly modifying each PCC. Changes
to the directory structure (e.g., mount and rename) also remove dentries under the old
and new path from the direct lookup hash table (DLHT). PCC and DLHT entries are lazily
repopulated on the slowpath.

Second, we ensure that the results of a stale slowpath lookup cannot be re-added to
the DLHT or PCC by using an atomic, global sequence counter (invalidation). The
sequence counter is read before and after a slowpath traversal; results are added to the
DLHT and PCC only if the counter has not changed, implying no concurrent shootdowns.

Third, we use VFS-level synchronization to ensure that slowpaths synchronize correctly
with the mutation. As an example, rename acquires both a global rename lock se-
quence lock, along with per-dentry locks on the old and new parent directory. When the
rename lock is held for writing, all lookups on the slowpath (i.e., the current Linux
code) must lock each dentry in a hand-over-hand fashion from the root (or current work-
ing directory, for relative paths) to the target child. The locks on target dentries obstruct
the hand-over-hand traversal until the rename completes. The invalidation counter
prevents caching the results of slowpath lookups that already passed this point before the
dentry locks were acquired. Our implementation follows the VFS’s existing locking disci-
pline to avoid deadlocks; it adds version counters that detect inconsistencies and falls back
on the slowpath. Thus, relevant PCC and DLHT entries are invalidated before the rename
begins, blocking the fastpath; slowpath traversals will block until the rename is complete
and the per-dentry locks are released; and a sequence counter ensures that only slowpath
traversals that observe the new paths can repopulate the DLHT and PCC.

These recursive traversals shift directory permission and structure changes from constant
time to linear in the size of the sub-tree. As one example, to rename or chmod a directory
that has 10,000 descendants with at most depth of 4 takes roughly 330 microseconds
to complete. In the original Linux kernel, rename and chmod are nearly constant-
time operations, and only take 4.5 and 1.1 microseconds. A few applications, such as
aptitude or rsync, rely on rename to atomically replace a directory, but this is a small
fraction of their total work and orders of magnitude less frequent than lookups, making this
a good trade-off overall.

Directory References. Unix semantics allow one to cd into a directory, and continue
working in that directory after a subsequent permission change would otherwise prohibit
further accesses. For instance, suppose a process is in working directory /foo/bar and
foo’s permissions change such that the process would not be able to enter bar in the
future. The process should be able continue to open files under bar as long as the process
does not leave the directory or exit. Similar semantics apply to open directory handles. In
our design, such a permission change would ultimately result in a blocked PCC entry, and
a fastpath lookup would violate the expected behavior. Our design maintains compatibility
by checking if the open reference is still permitted in the PCC. If the PCC has a more
recent entry that would prevent re-opening this handle, the lookup is forced to take the the
slowpath, and this stale result is not added to the PCC.

3.3 Accelerating Lookups with Signatures
Our optimized lookup uses 240-bit signatures to minimize the cost of key comparison.
Linux looks up dentries in a hash table with chaining. When the hash table key is a relatively
short path component, the cost of simply comparing the keys is acceptable. However, a full
path on Linux can be up to 4,096 characters, and comparing even modest-length strings can
erode the algorithmic benefits of direct lookup. We avoid this cost by creating a signature
of the path, which minimizes the cost of key comparisons.

Using signatures introduces a risk of collisions, which could cause the system to map a
path onto the wrong dentry. We first explain how signature collisions could cause problems
in our design, followed by the required collision resistance properties, and, finally, how we
selected the signature size to make this risk vanishingly small.

Signature collisions. When a user looks up a path, our design first calculates a signature
of the canonicalized path, looks up the hash in the global DLHT, and, if there is a hit in the
DLHT, looks up the dentry and sequence number in the per-credential PCC.

A user can open the wrong file if the dentry for another file with the same signature
is already in the DLHT, and that dentry is in the PCC. For example, if Alice has opened
file /home/alice/foo with signature X, and then opens file /home/alice/bar that
also has signature X, her second open will actually create a handle to file foo. This creates
the concern that a user might corrupt her own files through no fault of her own. This risk
can be configured to be vanishingly small based on the signature size (discussed below).

Any incorrect lookup result must be a file that the process (or another process with
the same credentials) has permission to access. For a fastpath lookup to return anything,
a matching dentry pointer must be in the task’s PCC, which is private to tasks with the
same credentials. Thus, a collision will not cause Alice to accidentally open completely
irrelevant files that belong to Bob, which she could not otherwise access.

Our design correctly handles the case where two users access different files with the
same signature, because misses in the PCC will cause both users to fall back on the
slowpath. Suppose Bob has opened foo, which collides with Alice’s bar. When Alice
opens bar, its signature will match in the DLHT, but will miss in the PCC. This causes
Alice’s lookup to take the slowpath to re-execute the prefix check, ultimately opening the
correct file and adding this dentry to her PCC. Thus, if Bob were adversarial, he cannot
cause Alice to open the wrong file by changing dcache-internal state.

We choose a random key at boot time for our signature hash function, mitigating the
risk of deterministic errors or offline collision generation, as one might use to attack an

application that opens a file based on user input, such as web server. Thus, the same path
will not generate the same signature across reboots or instances of the same kernel.

Despite all of these measures, this risk may still be unacceptable for applications running
as root, which can open any file, especially those that accept input from an untrusted user.
For example, suppose a malicious user has identified a path with the same signature as
the password database. This user might pass this path to a setuid-root utility and trick
the setuid utility into overwriting the password database. This risk could be eliminated
by disallowing signature-based lookup acceleration for privileged binaries or security-
sensitive path names, although this is not implemented in our prototype.

Collision Resistance Requirements. The security of our design hinges on an adversary
only being able to find collisions through brute force. Our design can use either a 2-
universal hash function or a pseudorandom function family (PRF) to generate path sig-
natures. In terms of collision resistance, the difference between a 2-universal hash and a
PRF is that the adversary can potentially learn the secret key by observing the outputs of
the 2-universal function, but cannot learn the key from the outputs of a PRF. Because our
dcache design does not reveal the signatures to the user, only whether two paths have a
signature collision, a hash function from either family is sufficient.

One caveat is that, with a 2-universal hash function, one must be careful that timing
and other side channels do not leak the signature. For example, one cannot use bits from
the signature to also index the hash table, as one might learn bits of the signature from
measuring time to walk the chain on a given hash bucket. In the case of our selected
function, one can safely use the lower bits from the 256-bit hash output, as lower bits
are not influenced by the values in higher bits in our particular algorithm; we thus use a 16
bit hash table index and a 240-bit signature. In contrast, when the signature is generated
with a PRF, concerns about learning the signature from side channels are obviated.

Our design uses the 2-universal multilinear hash function [21]. We did several experi-
ments using PRFs based on the AES-NI hardware, and could not find a function that was
fast enough to improve over baseline Linux. Using current 128-bit AES hardware, we could
improve performance at 4 or more path components, but creating a 256-bit PRF required a
more elaborate construction that is too expensive. A more cautious implementation might
favor a PRF to avoid any risk of overlooked side channels, especially if a fast, 256-bit PRF
becomes available in future generations of hardware.

Probability of a signature collision. We selected a 240-bit signature, which is compa-
rable to signature sizes used in data deduplication systems, ranging from 128–256 bits.
Deduplication designs commonly select a signature size that introduces a risk of collisions
substantially less than the risk of undetected ECC RAM errors [13, 34, 40, 50].

We assume an adversary that is searching for collisions by brute force. This adversary
must lookup paths on the system, such as by opening local files or querying paths on a web
server. Because our hash function is keyed with a random value and the output is hidden
from the user, the adversary cannot search for collisions except on the target system. Thus,
the adversary is limited by the rate of lookups on the system, as well as the capacity of the
target system to hold multiple signatures in cache for comparison.

We calculate the expected time at which the risk of a collision becomes non-negligible
(i.e., higher than 2−128) and model the risk of collision as follows. First, |H(X)| = 2240

is the number of possible signatures. We limit the cache to n = 235 entries (i.e., assuming
10TB of dcache space in RAM and 320 bytes per entry), with an LRU replacement policy.
We calculate the number of queries (q) after which the risk of a collision is higher than
P = 2−128 as follows:

q ' ln(1− p) ∗ |H(x)|
−n

' ln(1− 2−128) ∗ 2240

−235
' 277

At a very generous lookup rate of 100 billion per second (current cores can do roughly 3
million per second), the expected time at which the probability of a brute-force collision
goes above 2−128 is 48 thousand years.

4. Generalizing the Fast Path
Thus far, we have explained our fast path optimization using the relatively straightforward
case of canonical path names. This section explains how these optimizations integrate with
Linux’s advanced security modules, as well as how we address a number of edge cases in
Unix path semantics, such as mount options, mount aliases, and symbolic links.

4.1 Generalizing Credentials
Linux includes an extensible security module framework (LSMs [47]), upon which
SELinux [24], AppArmor [1], and others are built. An LSM can override the implementa-
tion of search permission checks, checking customized attributes of the directory hierarchy
or process. Thus, our dcache optimizations must still work correctly even when an LSM
overrides the default access control rules.

Our approach leverages the cred structure in Linux, which is designed to store the
credentials of a process (task struct), and has several useful properties. First, a cred
struct is comprehensive, including all variables that influence default permissions, and
including an opaque security pointer for an LSM to store metadata. Second, a cred is
copy-on-write (COW), so when a process changes its credentials, such as by executing a
setuid binary or changing roles in SELinux, the cred is copied. We manually checked
that AppArmor and SELinux respect the COW conventions for changes to private metadata.
Moreover, a cred can be shared by processes in common cases, such as a shell script
forking children with the same credentials. Thus, the cred structure meets most of our
needs, with a few changes, which we explain below.

We store cached prefix checks (§3.1) in each cred structure, coupling prefix check
results with immutable credentials. New cred structures are initialized with an empty
PCC. When more processes share the PCC, they can further reduce the number of slowpath
lookups.

One challenge is that Linux often allocates new cred structures even when credentials
do not change. The underlying issue is that COW behavior is not implemented in the page
tables, but rather by convention in code that might modify the cred. In many cases,
such as in exec, it is simpler to just allocate another cred in advance, rather than
determine whether the credentials will be changed. This liberal allocation of new creds
creates a problem for reusing prefix cache entries across child processes with the same
credentials. To mitigate this problem, we wait until a new cred is applied to a process
(commit creds()). If the contents of the cred did not change, the old cred and PCC
is reused and shared.

Our cred approach memoizes complex and potentially arbitrary permission evaluation
functions of different LSMs.

4.2 Non-Canonical Paths and Symbolic Links
Our optimized hash table is keyed by full path. However, a user may specify variations of
a path, such as /X/Y/./Z for /X/Y/Z. Simple variations are easily canonicalized in the
course of hashing.

A more complex case is where, if /X/L is a symbolic link, the path /X/L/../Y
could map to a path other than /X/Y. Similarly, if the user doesn’t have permission to
search /X/Z, a lookup of /X/Z/../Y should fail even if user has permission to search
/X/Y. In order to maintain bug-for-bug compatibility with Linux, our prototype issues
an additional fastpath lookup at each dot-dot to check permissions. Maintaining Unix
semantics introduces overhead for non-canonical paths.

We see significantly higher performance by using Plan 9’s lexical path seman-
tics [33]. Plan 9 minimized network file system lookups by pre-processing paths such
as /X/L/../Y to /X/Y. We note that Plan 9 does component-at-a-time lookup, but does
not have a directory cache.

Symbolic Links. We resolve symbolic links on our lookup fastpath by creating dentry
aliases for symbolic links. For instance, if the path /X/L is an alias to /X/Y, our kernel

will create dentries that redirect /X/L/Z to /X/Y/Z. In other words, symbolic links are
treated as a special directory type, and can create children, caching the translation.

Symbolic link dentries store the 240-bit signatures that represent the target path. The
PCC is separately checked for the target dentry. If a symbolic link changes, we must inval-
idate all descendant aliases, similar the invalidation for a directory rename. This redirec-
tion seamlessly handles the cases where permission changes happen on the translated path,
or the referenced dentries are removed to reclaim space.

4.3 Mount Points
Our fastpath handles several subtle edge cases introduced by mount points.

Mount options. Mount options, such as read-only or nosuid, can influence file access
permission checks. The Linux dcache generally notices mount points as part of the hierar-
chical file system walk, and checks for permission-relevant mount flags inline. Once this
top-down walk is eliminated, we need to be able to identify the current mount point for
any given dentry. We currently add a pointer to each dentry, although more space efficient
options are possible.

Mount Aliases. Some pseudo file systems, such as proc, dev, and sysfs, can have the
same instance mounted at multiple places. This feature is used by chroot environments
and to move these file systems during boot. A bind mount can also create a mount alias.

In our system, a dentry only stores one signature and can only be in the direct lookup
hash table by one path at a time. Our current design simply picks the most recent to
optimize—favoring locality. If a slowpath walk notices that the matching dentry (by path)
has a different signature, is under an aliased mount, and is already in the DLHT, the
slowpath will replace the signature, increment the dentry version count, and update the
pointer to the dentry’s mount point. The version count increment is needed in case the
aliased paths have different prefix check results. This approach ensures correctness in all
cases, and good performance on the most recently used path for any mount-aliased dentry.

Mount Namespaces. Mount namespaces in Linux allow processes to create private mount
points, including chroot environments, that are only visible to the process and its descen-
dants. When a process creates a new mount namespace, it also allocates a new, namespace-
private direct lookup hash table. The slowpath always incorporates any mount redirection,
and any new signature-to-dentry mappings will be correct within the namespace. Thus, the
same path (and signature) inside a namespace will map to a different dentry than outside of
the namespace. Similarly, the prefix check cache (PCC) will always be private within the
namespace.

As with mount aliases, we only allow a dentry to exist on one direct lookup hash table
at a time. This favors locality, and makes the invalidation task tractable when a renamed
directory is shared across many namespaces. The invalidation code used for directory tree
modifications simply evicts each child dentry from whatever DLHT it is currently stored
in.

Network File Systems. Our prototype does not support direct lookup on network file
systems, such as NFS versions 2 and 3 [37]. In order to implement close-to-open consis-
tency on a stateless protocol, the client must revalidate all path components at the server—
effectively forcing a cache miss and nullifying any benefit to the hit path. We expect these
optimizations could benefit a stateful protocol with callbacks on directory modification,
such as AFS [19] or NFS 4.1 [38].

4.4 Summary
This section demonstrates how our directory cache optimizations can support the wide
range of features Linux has built upon the directory cache, including namespaces, enhanced
security modules, and symbolic links. Our prototype focuses on Linux, which has arguably
the most features intertwined with its directory cache, but we believe these optimizations
would work in other systems, with modest porting effort.

Our design has the following requirements, which we expect would be met by any
POSIX-compliant directory cache. First, POSIX permission semantics require directory
access checks on the path from the current root or working directory to the file (i.e., pre-
fix checking); our implementation inherits Linux’s invariant that any cached directory’s
parents are in the cache, but any design that can implement prefix checking should suf-
fice. Second, we require that, if a directory’s permissions change, there is a programmatic
way to find all descendants in the cache (§3.2). Our implementation integrates with opti-
mistic synchronization in the Linux dcache for good performance and consistency, but this
design could integrate with any reasonable synchronization scheme, such as FreeBSD’s
reader/writer locks. Finally, we leverage the fact that Linux has an immutable credentials
structure (§4.1); adapting to mutable or less consolidated credentials would require extra
effort.

5. Improving the Hit Rate
The previous sections explain how changes to the structure of the dcache can lower the
average hit latency, through algorithmic improvements. This section identifies several
simple changes that can improve the hit rate. In the case of a dcache miss, the low-level file
system is called to service the system call. At best, the on-disk metadata format is still in
the page cache, but must be translated to a generic format; at worst, the request blocks on
disk I/O. Although not every application heavily exercises these cases with unusually low
hit rates, the evaluation shows several widely-used applications that substantially benefit
from these optimizations.

5.1 Caching Directory Completeness
Although the Linux dcache tracks the hierarchical structure of directories, it has no notion
of whether a directory’s contents are completely or partially in the cache. Suppose Alice
creates a new directory X on a local file system; if her next system call attempts to create
file X/Y, the dcache will miss on this lookup and ask the low-level file system if X/Y exists.
This overhead can be avoided if the VFS tracks that all directory contents are in the cache.

A second example is readdir, which lists the files in a directory, along with their inode
number and their types, such as a regular file, character device, directory, or symbolic link.
In the current VFS readdir operation, the low-level file system is always called, even if
the entire directory is in cache. For directories too large to list in the user-supplied buffer,
readdir may be called multiple times, storing an offset into the directory. To construct
this listing, the low-level file system must reparse and translate the on-disk format, and may
need to read the metadata block from disk into the buffer cache. As a result, readdir is
generally an expensive file system operation, especially for large directories.

We observe that repeatedly listing a directory is a common behavior in file systems. For
example, a user or a shell script may repeatedly run the ls command in a directory. Some
applications coordinate state through directory contents, requiring frequent and repeated
directory listings. For example, maildir is a popular email back-end storage format [2],
yielding better performance scalability than the older mbox format. Maildir stores each
inbox or subfolder as a directory, and each individual message is a file within the directory.
File names encode attributes including flags and read/unread status. If a message changes
state, such as through deletion or being marked as read, the IMAP server server will rename
or unlink the file, and reread the directory to sync up the mail list. Similarly, a mail delivery
agent (MDA), running as a separate process, may concurrently write new messages into the
directory, requiring the IMAP server to monitor the directory for changes and periodically
re-read the directory’s contents.

Our Linux variant caches readdir results returned by the low-level file system in the
directory cache. If all of a directory’s children are in the cache, the dentry is marked with
a new DIR COMPLETE flag. This flag is set upon creation of a new directory (mkdir), or
when a series of readdir system calls completes without an lseek() on the directory
handle or a concurrent eviction of any children to reclaim space. We note that concurrent

file creations or deletions interleaved with a series of readdirs will still be in the
cache and yield correct listing results. After setting the DIR COMPLETE flag, subsequent
readdir requests will be serviced directly from the dentry’s child list. Once a directory
enters the complete state, it leaves this state only if a child dentry is removed from the cache
to reclaim space.

One caveat to this approach is that readdir returns part of the information that would
normally appear in an inode, but not enough to create a complete inode. For these files or
subdirectories, we add dentries without an inode as children of the directory. These dentries
must be separated from negative dentries when they are looked up, and be linked with a
proper inode. This approach allows readdir results to be used for subsequent lookups,
cleanly integrates with existing dcache mechanisms, and gets the most possible use from
every disk I/O without inducing I/O that was not required.

We note that Solaris includes a similar complete directory caching mode [25], but it
is not integrated with readdir or calls other than lookup, is a separate cache (so the same
dentries can be stored twice, and both hash tables must be checked before missing), and the
comments indicate that it only has performance value for large directories. Our results
demonstrate that, when properly integrated into the directory cache, tracking complete
directories has more value than previously thought.

File Creation. Directory completeness caching can also avoid compulsory misses on
new file creation. Although negative dentry caching works well for repeated queries for
specific files that do not exist, negative dentries are less effective when an application
requests different files that do not exist. A common example of unpredictable lookups
comes from secure temporary file creation utilities [8]. In our prototype, a miss under a
directory with the DIR COMPLETED flag is treated as if a negative dentry were found,
eliding this compulsory miss. In our current implementation, this flag will only be set in a
directory that has been read or newly created, but other heuristics to detect frequent misses
for negative dentries and to load the directory may also be useful.

5.2 Aggressive Negative Caching
Negative dentries cache the fact that a path does not exist on disk. This subsection identifies
several opportunities for more aggressive use of negative dentries, some of which work in
tandem with direct lookup.

Renaming and Deletion. When a file is renamed or unlinked, the old path can be
converted to a negative dentry. Although Linux does convert a cached, but unused dentry
to a negative dentry on unlink, this is not the case for rename and unlink of a file that is
still in use. We extend these routines to keep negative dentries after a file is removed, in the
case that the path is reused later, as happens with creation of lock files or Emacs’s backup
(“tilde”) files.

Pseudo File Systems. Pseudo file systems, like proc, sys, and dev, do not create
negative dentries for searched, nonexistent paths. This is a simplification based on the
observation that disk I/O will never be involved in a miss. Because our fastpath is still
considerably faster than a miss, negative dentries can be beneficial even for in-memory file
systems, accelerating lookup of frequently-searched files that do not exist.

Deep Negative Dentries. Finally, we extended the direct lookup fastpath (§3) with the
ability to create “deep” negative dentries. Consider the case where a user tries to open
/X/Y/Z/A, and /X/Y/Z does not exist. In the slowpath, the lookup will fail when it
hits the first missing component, and it is sufficient to only cache a negative dentry for Z.
Repeated lookups for this path will never hit on the fastpath, however, because there is no
entry for the full path.

In order for this case to use the fastpath, we allow negative dentries to create negative
children, as well as deep children. In other words, we allow negative dentry /X/Y/Z to
create children A and A/B, which can service repeated requests for a non-existent path. If

a file is created for a path that is cached as negative, and the file is not a directory, any
negative children are evicted from the cache.

We also create deep negative dentries under regular files to capture lookup failures that
return ENOTDIR instead of ENOENT. This type of lookup failure happens when a filename
is use as if it were a directory, and a path underneath is searched. For example, if /X/Y/Z
is a regular file, and a user searches for /X/Y/Z/A, the Linux kernel will return ENOTDIR
and never create a negative dentry. We optimize this case with a deep, ENOTDIR dentry.

6. Evaluation
This section evaluates our directory cache optimizations, and seeks to answer the following
questions:
1. How much does each optimization—the lookup fastpath, whole directory caching, and

more aggressive negative dentries—improve application performance?
2. How difficult are the changes to adopt, especially for individual file systems?

The evaluation includes both micro-benchmarks to measure the latency of file system
related system calls in best-case and worst-case scenarios, and a selection of real-world
applications to show potential performance boost by our solution in practice.

All experiment results are collected on a Supermicro Super Server with a 12-core 2.40
GHz Intel Core Xeon CPU, 64GB RAM, and a 2 TB, 7200 RPM ATA disk, formatted as
a journaled ext4 file system, configured with a 4096-byte block size. The OS is Ubuntu
14.04 server, Linux kernel 3.14. All measurements are a mean of at least 6 runs (for the
longer-running experiments); most measurements are hundreds or thousands of runs, as
needed to ensure a consistent average. Tables and graphs indicate 95% confidence intervals
with “+/-” columns or error bars.

6.1 File Lookup Optimizations
Micro-benchmarks. We use an extended LMBench 2.5 UNIX microbenchmark suite [29]
to evaluate latency of path lookup at the system call level. Figure 6 shows the latency to
stat and open sample paths with various characteristics, including varying lengths,
symbolic links, parent (dot dot) directories, and files that are not found.

The primary trend we observe is that, as paths have more components, the relative gain
for our optimization increases. For a single component file, stat gains 3% and open is
equivalent to baseline Linux. For longer paths, the gain increases up to 26% and 12%,
respectively.

To evaluate the worst case, we include a set of bars, labeled “fastpath miss + slowpath”,
which exercise the fast path code, but the kernel is configured to always miss in the PCC.
This simulates the full cost of executing the optimized fastpath unsuccessfully, and then
walking the O(n) slowpath in the cache. This case does not miss all the way to the low-
level file system. The overhead typically ranges from 12–93%, except for path neg-d. In the
case of neg-d, the first component is missing, and a component-at-a-time walk would stop
sooner than a direct lookup. In general, the neg-d case would be mitigated by deep negative
dentries. In practice, these overheads would only be observed for compulsory misses in the
dcache, or by an application that exhibits an extreme lack of locality.

We next compare the costs of default Linux parent (“dot dot”) semantics to Plan 9’s
lexical semantics. Enforcing Linux semantics for a path with parent references causes our
optimizations to perform roughly 31% worse than unmodified Linux, as this requires an
extra lookup per parent. Lexical path semantics, on the other hand, allow our optimization
to continue using a single lookup, improving performance by 43–52%. Lexical path se-
mantics have an independent benefit, and could reduce the number of components to walk
in a lookup in unmodifed Linux. Although this difference is large, our test applications do
not heavily use parent directory pointers, and are not sensitive to this difference.

Caching the resolution of a symbolic link improves performance for paths link-f and
link-d by 44% and 48%, respectively. This improvement is insensitive to where in the path

0.0

0.5

1.0

1.5

st
at

La
te

nc
y

(µ
s)

Unmodified fastpath hit fastpath miss + slowpath

0.0

0.5

1.0

1.5

2.0

2.5

3.0

op
en

La
te

nc
y

(µ
s)

(* represents Plan 9’s lexical parent semantics)
default: /usr/include/gcc-x86 64-linux-gnu/sys/types.h
1-comp: FFF 2-comp: XXX/FFF 4-comp: XXX/YYY/ZZZ/FFF
8-comp: XXX/YYY/ZZZ/AAA/BBB/CCC/DDD/FFF
link-f: XXX/YYY/ZZZ/LLL -> FFF
link-d: LLL/YYY/ZZZ/FFF -> XXX/YYY/ZZZ/FFF
neg-f: XXX/YYY/ZZZ/NNN (NNN not found)
neg-d: NNN/XXX/YYY/FFF (NNN not found)
1-dotdot: XXX/../FFF 4-dotdot: XXX/YYY/../../AAA/BBB/../../FFF

Figure 6: System call stat and open latency for micro-benchmark (lat syscall in
LMBench), based on different path patterns. We include a synthetic evaluation of always
missing on the fastpath and falling back to the slowpath, and a comparison with Plan 9’s
lexical parent semantics, where appropriate. Lower is better.

the link occurs, as both link-f and link-d walk the same number of components (link-d maps
“LLL” onto “XXX”).

For files that do not exist (negative dentries), we see comparable improvements to paths
that are present. The one exception is long paths that don’t exist under a directory early
in the path. We believe this case is rare, as applications generally walk a directory tree
top-down, rather than jumping several levels into a non-existent directory. In this situation
(path neg-d), baseline Linux would stop processing the path faster than our optimization can
hash the entire path, even with caching deep negative dentries. Nonetheless, deep negative
dentries are an important optimization: without them, stat of path neg-d would be 113%
worse and open would be 43% worse than unmodified Linux, versus 38% and 16% slower
with deep negative dentries.

Linux also includes *at() system call variants, which operate under a working
directory—typically using only a single component. Commensurate with the results above,
fstatat() benefits from our optimizations by 12% for a single path component,
and openat() is 4% faster than unmodified Linux. Some applications use multiple-
component names in conjunction with an *at call; in these cases, the benefit of our
optimization is proportional to the path length.

14%
48%

307%

3271%

29915%

6%

70%

810%

7394%

1%

10%

100%

1000%

10000%

100000%

single file depth=1,
10 files

depth=2,
100 files

depth=3,
1000 files

depth=4,
10000 files

ch
m

od
/r

en
am

e
La

te
nc

y
Sl

ow
do

w
n

chmod
rename

-2%

µs +/- µs +/- µs +/- µs +/- µs +/-
chmod 1.86 .00 1.60 .00 4.37 .00 36.38 .01 323 .02
rename 3.73 .00 4.68 .00 7.51 .00 40.14 .01 330 .05

Figure 7: chmod / rename latency in directories of various depths and sizes. Lower is
better.

0.0
0.5
1.0
1.5
2.0
2.5

0 4 8 12st
at

/o
pe

n
Sy

sc
al

l
La

te
nc

y
(µ

s)

Threads

stat open stat open
(Unmodified) (Optimized)

Figure 8: Latency of stat/open (of the same path), as more threads execute in parallel. Lower
is better.

To evaluate the overhead of updating directory permissions and changing the directory
structure, we measure chmod and rename latency. In our solution, the main factor
influencing these overheads are the number of children in the cache (directory children
out-of-cache do not affect performance). Figure 7 presents performance of chmod and
rename on directories with different depths and directory sizes. In general, the cost of a
rename or chmod increases dramatically with the number of children, whereas baseline
Linux and ext4 make these constant-time operations. Even with 10,000 children all in
cache, the worst-case latency is around 330 µs. As a point of reference, the Linux 3.19
source tree includes 51,562 files and directories. Initial feedback from several Linux
file system maintainers indicate that this trade would be acceptable to improve lookup
performance [15].

Space Overhead. Our prototype increases the size of a dentry from 192 bytes to 280
bytes. Our design also introduces a per-credential PCC of size 64 KB, and a second, global
hash table (the DLHT), which includes 216 buckets. Because Linux does not place any
hard limits on dcache size, except extreme under memory pressure, it is hard to normalize
execution time to account for the space cost. On a typical system, the dcache is tens to
hundreds of MB; increasing this by 50% is likely within an acceptable fraction of total
system memory. Alternatively, if one were to bound the total dcache size, this induces a
trade-off between faster hits and fewer hits. We leave exploration of these trade-offs for
future work.

4.2

24.4

284.0

2,885.5

2.4
7.9

73.3

796.9

1

10

100

1,000

10 100 1000 10000re
ad

di
r

La
te

nc
y

(µ
s)

Directory Size (# of Files)

Unmodified Optimized

11.7 13.4
17.4 18.0

11.6
13.1

15.9 16.6

0

5

10

15

20

10 100 1000 10000m
ks

te
m

p
La

te
nc

y
(µ

s)

Directory Size (# of Files)
Figure 9: Latency in logscale for readdir function calls, and latency in microsecond for
mkstemp function calls, on directories with different sizes. Lower is better.

Applications Path Stats Unmodified kernel Optimized kernel
l # s +/- hit% neg% s +/- Gain

find -name 39 1 .055 .000 100.0 .18 .044 .000 19.2 %
tar xzf linux.tar.gz 22 3 4.039 .024 84.2 .06 4.038 .010 .05 %
rm -r linux src 24 3 .607 .008 100.0 .01 .621 .020 -2.32 %
make linux src 29 4 868.079 .647 91.2 17.84 868.726 .892 -.07 %
make -j12 linux src 29 4 102.958 .597 92.9 20.03 103.308 .288 -.34 %
du -s linux src 10 1 .070 .000 100.0 .01 .061 .012 12.65 %
updatedb -U usr 3 1 .011 .000 99.9 .00 .008 .000 29.12 %
git status linux src 16 4 .176 .000 100.0 .05 .168 .000 4.26 %
git diff linux src 16 4 .066 .000 100.0 1.49 .060 .000 9.89 %

Table 1: Execution time and path statistics of real-world applications bounded by directory
cache lookup latency. Warm cache case. Hit rate and negative dentry rate are also included.
The average path length in bytes (l) and components (#) are presented in the first two
columns. Lower is better.

Scalability. Figure 8 shows the latency of a stat/open on the same path as more
threads execute on the system. The read side of a lookup is already linearly scalable on
Linux, and our optimizations do not disrupt this trend—only improve the latency. The
rename system call introduces significant contention, and is less scalable in baseline
Linux. For instance, a single-file, single-core rename takes 13µs on our test system running
unmodified Linux; at 12 cores and different paths, the average latency jumps to 131µs
for our optimized kernel, these numbers are 18 and 118µs, respectively, indicating that
our optimizations do not make this situation worse for renaming a file. As measured in
Figure 7, our optimizations do add overhead to renaming a large directory, which would
likely exacerbate this situation.

6.2 Caching Directory Completeness
Figure 9 shows the latency of a readdir microbenchmark with varying directory sizes.
The ability to cache readdir results improves performance by 46–74%. Caching helps
more as directories get larger. OpenSolaris comments indicate that this idea was only
beneficial in UFS for directories with at least 1,024 entries 2. Our result indicates that
there is benefit even for directories with as few as 10 children.

Figure 9 also shows the latency of creating a secure, randomly-named file in directories
of varying size. We measure from 1–8% improvement for the mkstemp library. Although
most applications’ execution times are not dominated by secure file creation, it is a common
task for many applications, and of low marginal cost.

2 see line 119 of fs/ufs/ufs dir.c in OpenSolaris, latest version of frozen branch onnv-gate.

App Unmodified kernel Optimized kernel
s +/- hit% neg% s +/- Gain

find 1.39 .01 38 1 1.35 .02 3.1 %
tar 4.00 .10 85 0 3.98 .04 .5 %
rm -r 1.81 .05 83 1 1.84 .06 -1.4 %
make 885.33 .31 100 45 883.88 2.03 .2 %
make -j12 114.51 .60 100 47 114.54 .89 .2 %
du -s 1.49 .01 6 0 1.46 .02 2.3 %
updatedb .73 .01 34 0 .74 .01 -2.1 %
git status 4.13 .03 62 2 4.11 .03 .7 %
git diff .84 .01 61 0 .86 .01 -14.0 %

Table 2: Execution time, hit rate, and negative dentry rate for real-world applications
bounded by directory cache lookup latency with a cold cache. Lower is better.

6.3 Applications
Command-Line Applications. The improvement applications see from faster lookup is,
of course, proportional to the fraction of runtime spent issuing path-based system calls as
well as the amount of time listing directories. We measure the performance of a range of
commonly-used applications. In most cases, these applications benefit substantially from
these optimizations; in the worst case, the performance harm is minimal. The applications
we use for benchmarking include:
• find: search for a file name in the Linux source directory.
• tar xzf: decompress and unpack the Linux source.
• rm -r: remove the Linux source tree.
• make and make -j12: compile the Linux kernel.
• du -s: Recursively list directory size in Linux source.
• updatedb: rebuild database of canonical paths for commonly searched file names in

/usr from a clean debootstrap.
• git status and git diff: display status and unstaged changes in a cloned Linux

kernel git repository.
For each application we test, we evaluate the performance in both cases of a warm cache
(Table 1) and a a cold cache (Table 2). To warm the cache, we run the experiment once
and drop the first run. For the warm cache tests, we also provide statistics on the path
characteristics of each application.

Perhaps unsurprisingly, metadata-intensive workloads benefit the most from our op-
timizations, such as find and updatedb, as high as 29% faster. Note that find,
updatedb, and du use the *at() APIs exclusively, and all paths are single-component;
these gains are attributable to both improvements to lookup and directory completeness
caching.

We note that the performance of directory-search workloads is sensitive to the size of
PCC; when we run updatedb on a directory tree that is twice as large as the PCC, the
gain drops from 29% to 16.5%. This is because an increased fraction of the first lookup in a
newly-visited directory will have to take the slowpath. Our prototype has a statically-set
PCC size and we evaluate with a PCC sufficiently large to cache most of the relevant
directories in the warm cache experiments. We expect that a production system would
dynamically resize the PCC up to a maximum working set; we leave investigating an
appropriate policy to decide when to grow the PCC versus evict entries for future work.

The application that is improved primarily by our hit optimization is git, which shows a
gain of 4–9.9%. Cases that are dominated by other computations, such as a Linux compile,
show minimal (≤ 2.3% slowdown). In the cold cache cases, all gains or losses are roughly
within experimental noise, indicating that these optimizations are unlikely to do harm to
applications running on a cold system. In general, these results affirm that common Linux
applications will not be harmed by the trade-offs underlying our optimizations, and can
benefit substantially.

Table 1 also indicates statistics about these workloads on unmodified Linux. In general,
each path component tends to be roughly 8 characters, and *at-based application gener-

0
50
100
150
200
250
300
350

500 100 500 2000 2500 3000

D
ov

ec
ot

 T
hr

ou
gh

pu
t

(O
pe

ra
tio

ns
 /

Se
c)

Mail Box Size (# of Mails)

Unmodified optimized+7.8%

+9.1%
+9.1%

+9.5%
+12.2%+10.3%

Figure 10: Throughput for marking and unmarking mail on the Dovecot IMAP server.
Higher is better.

of files Unmodified kernel Optimized kernel
Req/s +/- Req/s +/- Gain

10 27,638.23 43.31 31,491.98 55.24 12.24 %
102 7,423.86 11.81 7,934.07 12.76 6.43 %
103 1,017.02 0.58 1,081.02 0.38 5.92 %
104 99.03 0.11 110.14 0.10 10.09 %

Table 3: Throughput of downloading generated directory listing pages from an Apache
server. Higher is better.

ally lookup single-component paths, whereas other applications typically walk 3–4 com-
ponents. Our statistics also indicate that, with a warm cache, these applications should see
84–100% hit rate in the cache, so optimizing the hit path is essential to performance. Fi-
nally, make is the only application with a significant fraction of negative dentries (roughly
20%), which is to be expected, since it is creating new binary files.

Server Applications. An example of software that frequently uses readdir is an IMAP
mail server using the MailDir storage format. We exercise the Dovecot IMAP server by
creating 10 mailboxes for a client. We use a client script to randomly select messages in
different mailboxes and mark them as read, flagged, or unflagged. Internally, marking a
mail causes a file to be renamed, and the directory to be re-read. To eliminate network
latency, we run network tests on the localhost; in a practical deployment, network latency
may mask these improvements to the client, but the load of the server will still be reduced.

Figure 10 shows the throughput for the Dovecot mail server on both kernels; improve-
ments range from 7.8–12.2%. Commensurate with the readdir microbenchmark, larger
directories generally see larger improvement, plateauing at a 10% gain. We similarly exer-
cise the Apache web server’s ability to generate a file listing using the Apache benchmark
(Table 3). These pages are not cached by Apache, but generated dynamically for each re-
quest. This workload also demonstrates improvements in throughput from 6–12%. Overall,
these results show that the readdir caching strategy can reduce server load or improve server
throughput for directory-bound workloads.

6.4 Code Changes
In order estimate the difficulty of adoption, Table 4 lists the lines of code changed in our
Linux prototype. The vast majority of the changes required (about 1,000 LoC) are hooks
localized to the dcache itself (dcache.c and namei.c); most of these optimizations
are in a separate set of files totaling about 2,400 LoC. Also, the low-level file systems we
tested did not require any changes to use our modified directory caches. The main impact
on other subsystems was actually to the LSMs, which required some changes to manage
PCCs correctly. Thus, the burden of adoption for other kernel subsystems is very minor.

Source files Original (LoC) Patched/Added (LoC)
New source files & headers 2,358
fs/namei.c 3,048 425 13.9 %
fs/dcache.c 1,997 142 7.1 %
Other VFS sources 3,859 98 2.5 %
Other VFS headers 2,431 218 9.0 %
Security Modules (SELinux, etc) 20,479 76 0.0 %

Table 4: Lines-of-code (LoC) in Linux changed, as measured by sloccount [46].

6.5 Discussion and Future Work
If one were willing to sacrifice complete backward compatibility to maximize lookup
performance, the primary opportunity for improvement may actually be in designing a
simpler interface for path-based calls. As the evaluation above shows, there are several
Linux/POSIX features that are unduly expensive to support in this design. For instance,
implementing Plan 9-style lexical path semantics can significantly improve look up for
paths with a “dot dot”. Similarly, working directory semantics require a slowpath traversal.
Arguably, these are points where a particular implementation choice has “leaked” into the
interface specification, and these idiosyncracies constrain the choice of supporting data
structure. We recommend an interface that is as simple and stateless as possible; this
recommendation is in line with other recommendations for scalability [10].

Linux statically selects the number of buckets in the hash table (262,144 by default). If
this number is not selected well, or the demand changes over time, space will be wasted
or bucket chains will get longer, harming lookup performance. On our test systems, 58%
of buckets were empty, 34% had one item, 7% had 2 items, and 1% had 3–10 dentries,
indicating an opportunity to improve lookup time and space usage. A number of high-
performance hash tables have been developed in recent years that impose a constant bound
on the search time as well as on wasted space [18, 23, 32, 43].

7. Related Work
Most related work on improving directory cache effectiveness targets two orthogonal prob-
lems: reducing the miss latency and prefetching entries. Most similar to our optimization to
memoize prefix check results, SQL Server caches the result of recent access control checks
for objects [30].

Reducing Miss Latency. One related strategy to reduce miss latency is to pass all compo-
nents to be looked up at once to the low-level file system, essentially creating a prefetching
hint. Several network file systems have observed that component-at-a-time lookup gener-
ates one round-trip message per component, and that a more efficient strategy would pass
all components under a mount point in one message to the server for lookup [14, 45]. A
similar argument applies to local file systems, where a metadata index may be more effi-
ciently fetched from disk by knowing the complete lookup target [22, 36]. As a result, this
division of labor is adopted by Windows NT and Solaris [25, 36]. One caveat is that, when
not taken as a prefetching “hint”, this can push substantial VFS functionality into each
low-level file system, such as handling redirection at mount points, symbolic links, and
permission checking. Chen et al. note that pushing permission checks from the VFS layer
down to individual file systems is a substantial source of difficult-to-prevent kernel bugs
in Linux [9]. In contrast, this project caches the result of previous prefix checks over paths
already in memory to reduce hit latency, rather than using the full path as a prefetching
hint.

Another ubiquitous latency-reduction strategy is persistently storing metadata in a hash
table. In order to reduce network traffic, several distributed file systems [5, 49, 51],
clustered environments [20, 48], and cloud-based applications [44] have used metadata
hashing to deterministically map metadata to a node, eliminating the need for a directory
service. The Direct Lookup File System (DLFS) [22] essentially organizes the entire disk
into a hash table, keyed by path within the file system, in order to look up a file with only

one I/O. Organizing a disk as a hash table introduces some challenges, such as converting
a directory rename into a deep recursive copy of data and metadata. DLFS solves the
prefix check problem by representing parent permissions as a closed form expression; this
approach essentially hard-codes traditional Unix discretionary access control, and cannot
easily extend to Linux Security Modules [47]. An important insight of our work is that
full path hashing in memory, but not on disk, can realize similar performance gains, but
without these usability problems, such as deep directory copies [22] on a rename or error-
prone heuristics to update child directory permissions [41].

VFS Cache Prefetching. Several file systems optimize the case where a readdir
is followed by stat to access metadata of subdirectories, such as with the ls -l
command [3, 22, 42]. When a directory read is requested, these low-level file systems
speculatively read the file inodes, which are often in relatively close disk sectors, into
a private memory cache, from which subsequent lookups or stat requests are serviced.
Similarly, the NFS version 2 protocol includes a READDIRPLUS operation, which requests
both the directory contents and attributes of all children in one message round trip [7].
These file systems must implement their own heuristics to manage this cache. Prefetching
is orthogonal to our work, which more effectively caches what has already been requested
from the low-level file system.

8. Conclusion
This paper presents a directory cache design that efficiently maps file paths to in-memory
data structures in an OS kernel. Our design decomposes the directory cache into separate
caches for permission checks and path indices, enabling single-step path lookup, as well
as facilitating new optimizations based on signatures and caching symbolic link resolution.
For applications that frequently interact with the file system directory tree, these optimiza-
tions can improve performance by up to 29%. Our optimizations maintain compatibility
with a range of applications and kernel extensions, making them suitable for practical de-
ployment.

Acknowledgments
We thank the anonymous reviewers, Michael Bender, Rob Johnson, David Wagner, and
our shepherd Michael Kaminsky for insightful comments on this work. Imran Brown and
William Jannen contributed to the prototype and evaluation. This research is supported
in part by NSF grants CNS-1149229, CNS-1161541, CNS-1228839, CNS-1405641, and
CNS-1408695.

References
[1] AppArmor. http://wiki.apparmor.net/.

[2] Daniel J. Bernstein. Using maildir format. http://cr.yp.to/proto/maildir.html,
1995.

[3] Tim Bisson, Yuvraj Patel, and Shankar Pasupathy. Designing a fast file system crawler with
incremental differencing. ACM SIGOPS Operating Systems Review, Dec 2012.

[4] D. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly Media, Inc., 3rd edition,
2005.

[5] Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Lan Xue. Efficient metadata
management in large distributed storage systems. In IEEE Conference on Mass Storage Systems
and Technologies (MSST), Washington, DC, USA, 2003.

[6] The *bsdstats project. www.bsdstats.org.

[7] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3 protocol specification. RFC 1813,
June 1995.

[8] CERT Secure Coding. FIO21-C. Do not create temporary files in shared directories.

http://wiki.apparmor.net/
http://cr.yp.to/proto/maildir.html
www.bsdstats.org

[9] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M. Frans
Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses and open problems. In Asia-
Pacific Workshop on Systems, pages 5:1–5:5, 2011.

[10] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris, and Eddie
Kohler. The scalable commutativity rule: Designing scalable software for multicore processors.
In Proceedings of the ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pages
1–17, 2013.

[11] Jonathan Corbet. JLS: Increasing VFS scalability. LWN, November 2009. http://lwn.
net/Articles/360199/.

[12] Jonathan Corbet. Dcache scalability and RCU-walk. Linux Weekly News, 2010.

[13] Biplob Debnath, Sudipta Sengupta, and Jin Li. Chunkstash: Speeding up inline storage dedupli-
cation using flash memory. In Proceedings of the USENIX Annual Technical Conference, pages
16–16, 2010.

[14] Dan Duchamp. Optimistic lookup of whole NFS paths in a single operation. In Proceedings of
the USENIX Summer Technical Conference, 1994.

[15] Rik Farrow. Linux FAST’15 summary. ;login: Magazine, 40(3):90–95, June 2015.

[16] Andriy Gapon. Complexity of FreeBSD VFS using ZFS as an example. Part
1. https://clusterhq.com/blog/complexity-freebsd-vfs-using-zfs-
example-part-1-2/, 2014.

[17] Tyler Harter, Chris Dragga, Michael Vaughn, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. A file is not a file: Understanding the I/O behavior of Apple desktop applications. In
Proceedings of the ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pages
71–83, 2011.

[18] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In Proceedings of the
International Conference on Distributed Computing (DISC), pages 350–364, 2008.

[19] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems, 6(1):51–81, 1988.

[20] Jharrod LaFon, Satyajayant Misra, and Jon Bringhurst. On distributed file tree walk of parallel
file systems. In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, 2012.

[21] Daniel Lemire and Owen Kaser. Strongly universal string hashing is fast. The Computer
Journal, page bxt070, 2013.

[22] Paul Hermann Lensing, Toni Cortes, and André Brinkmann. Direct lookup and hash-based meta-
data placement for local file systems. In ACM International Systems and Storage Conference
(SYSTOR), 2013.

[23] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman. Algorithmic
improvements for fast concurrent cuckoo hashing. In Proceedings of the ACM European
Conference on Computer Systems (EuroSys), pages 27:1–27:14, 2014.

[24] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux
operating system. In Proceedings of the USENIX Annual Technical Conference, 2001.

[25] Richard McDougall and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris Kernel
Architecture, Second Edition. Sun Microsystems Press, 2008.

[26] Paul E. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy Update
Techniques in Operating System Kernels. PhD thesis, 2004.

[27] Paul E. McKenney, Dipankar Sarma, and Maneesh Soni. Scaling dcache with RCU. Linux
Journal.

[28] Marshall Kirk McKusick and George V. Neville-Neil. The Design and Implementation of the
FreeBSD Operating System. Addison-Wesley, 2005.

[29] Larry McVoy and Carl Staelin. lmbench: Portable tools for performance analysis. In Proceed-
ings of the USENIX Annual Technical Conference, pages 23–23, 1996.

[30] Microsoft. Description of the ”access check cache bucket count” and ”access check cache
quota” options that are available in the sp configure stored procedure. https://support.
microsoft.com/en-us/kb/955644.

http://lwn.net/Articles/360199/
http://lwn.net/Articles/360199/
https://clusterhq.com/blog/complexity-freebsd-vfs-using-zfs-example-part-1-2/
https://clusterhq.com/blog/complexity-freebsd-vfs-using-zfs-example-part-1-2/
https://support.microsoft.com/en-us/kb/955644
https://support.microsoft.com/en-us/kb/955644

[31] Danilov Nikita. Design and implementation of xnu port of lustre client file system. Technical
report, 2005.

[32] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algorithms, pages
122–144.

[33] Rob Pike. Lexical File Names in Plan 9, or, Getting Dot-dot Right. In Proceedings of the
USENIX Annual Technical Conference, pages 7–7, 2000.

[34] Sean Quinlan and Sean Dorward. Venti: A new approach to archival storage. In Proceedings of
the USENIX Conference on File and Storage Technologies (FAST), pages 89–101, 2002.

[35] Dennis M. Ritchie and Ken Thompson. The unix time-sharing system. Communication ACM,
July 1974.

[36] M. Russinovich and D. Solomon. Windows Internals. Microsoft Press, 2009.

[37] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and
implementation or the sun network filesystem. In Proceedings of the USENIX Annual Technical
Conference, 1985.

[38] S. Shepler, Storspeed Inc., M. Eisler, D. Noveck, and NetApp. Network file system (NFS)
version 4 minor version 1 protocol. RFC 5661, Jan 2010.

[39] Amit Singh. Mac OS X Internals—A Systems Approach. Addison-Wesley, 2006.

[40] Kiran Srinivasan, Tim Bisson, Garth Goodson, and Kaladhar Voruganti. idedup: Latency-aware,
inline data deduplication for primary storage. In Proceedings of the USENIX Conference on File
and Storage Technologies (FAST), pages 24–24, 2012.

[41] Michael M. Swift, Peter Brundrett, Cliff Van Dyke, Praerit Garg, Anne Hopkins, Shannon Chan,
Mario Goertzel, and Gregory Jensenworth. Improving the granularity of access control in
Windows NT. In ACM Symposium on Access Control Models and Technologies (SACMAT),
2001.

[42] Douglas Thain and Christopher Moretti. Efficient access to many samall files in a filesystem
for grid computing. In Proceedings of the 8th IEEE/ACM International Conference on Grid
Computing, Washington, DC, USA, 2007. IEEE Computer Society.

[43] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, scalable, concurrent
hash tables via relativistic programming. In Proceedings of the USENIX Annual Technical
Conference, pages 11–11, 2011.

[44] Yixue Wang and Haitao Lv. Efficient metadata management in cloud computing. In ICCSN,
pages 514–519, 2011.

[45] Brent Welch. A comparison of three distributed file system architectures: Vnode, sprite, and
plan 9. Computer System, March 1994.

[46] David Wheeler. Sloccount, 2009.

[47] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. K. Hartman. Linux security modules:
General security support for the Linux kernel. In USENIX Security Symposium, 2002.

[48] Jing Xing, Jin Xiong, Ninghui Sun, and Jie Ma. Adaptive and scalable metadata management
to support a trillion files. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, 2009.

[49] Quan Zhang, Dan Feng, and Fang Wang. Metadata performance optimization in distributed file
system. In ICIS, Washington, DC, USA, 2012.

[50] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in the data domain
deduplication file system. In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST), pages 18:1–18:14, 2008.

[51] Yifeng Zhu, Hong Jiang, Jun Wang, and Feng Xian. HBA: Distributed metadata management
for large cluster-based storage systems. IEEE Trans. Parallel Distrib. Syst., pages 750–763,
2008.

	Introduction
	Background
	Unix Directory Hierarchy Semantics
	Linux Directory Cache
	Other Operating Systems
	Opportunities for Improvement

	Minimizing Hit Latency
	Caching Prefix Checks
	Coherence with Permission and Path Changes
	Accelerating Lookups with Signatures

	Generalizing the Fast Path
	Generalizing Credentials
	Non-Canonical Paths and Symbolic Links
	Mount Points
	Summary

	Improving the Hit Rate
	Caching Directory Completeness
	Aggressive Negative Caching

	Evaluation
	File Lookup Optimizations
	Caching Directory Completeness
	Applications
	Code Changes
	Discussion and Future Work

	Related Work
	Conclusion

